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NOTICE

This documentation should not be construed as a basis for terminating use of

combat simulations and wargames. Rather, it is intended to stimulate analyses

of such simulations and wargames in order to determine whether they would be

impacted significantly by the computations presented herein.

DISCLAIMER

:he findings in -his report are not to be construed as an official Department

of the Army position unless so designated by other authorized documents.

WARNING

information and data contained herein are based on the inputs available at the

time of preparation. The results are subject to change.
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THE VALIDITY OF ASSUMPTIONS STUDY
UDERLY ING CURRENT USES OF GS

LANCHESTER ATTRITION RATES GS

THE REASON FOR PERFORMING THE STUDY was to show that many of the prevailing
understandings concerning the relationships among the Lanchester, Stochastic
Lanchester, and the General Renewal models of combat are erroneous and to
collect, organize, and reduce to common notation almost all known tabled results
and curves of particular examples.

THE PRINCIPAL RESULTS of this study were*:

(1) All Lanchester model and Stochastic Lanchester model mean value
equivalent pairs differ for all times except at possible crossing points.
These differences may be very large.

(2) At least for the Square Law, the Lanchester model trajectories are
neither a universal upper or lower bound of the Stochastic Lanchester model
mean value trajectories.

(3) Even near time zero, the Lanchester and Stochastic Lanchester model
mean value trajectories may differ considerably (they do not differ materially
for the Square Law and the sequence of one-on-one duels version of the Linear
Law).

(4) For the Linear Law, the Square Law, the Mixed Law and the Square
Law with continuous reinforcements there is a Law of Large Numbers on suitably
transformed spaces. However, for untransformed spaces this does not apply,
for it can be shown that as the initial force sizes tend to infinity the
differences between Lanchester model and Stochastic Lanchester model mean
value trajectories tend to zero, or they may even tend to a constant or
infinity.

(5) Blackwell's Theorum does not imply that individual combatants with
general interfiring times tend to have negative exponentially distributed
interfiring times. This is even more strongly the case for terminating
processes.

(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general interfiring times will yield a process with
negative exponentially distributed interfiring times. This can only be
approximately correct for large numbers and for very large interfiring time
means. Again, the Theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate
general renewal processes.

TMA CPm 05 90 09 28 035
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(8) The Stochastic Lanchester model process variances are generally
quite significant and can be important for large force sizes, even near time
zero. In addition, general renewal model process variances are significantly
different that Stochastic Lanchester model process variances.

(9) The other Lanchester model measures, (a) expected number of survivors,
(b) expected time duration of the battle, and (c) probability of winning are
even less reliable predictors than the mean value trace.

(10) The basic assumptions of the Stochastic Lanchester models, as well
as the general renewal model, cannot hold for large numbers of combatants.

THE MAIN ASSUMPTIONS were that:

(a) All pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions.

(b) The true model which is to be approximated is termed a General Renewal
model.

(c) Each marksman fires until he is killed or makes a kill.

(d) The ammunition supply is unlimited.

(e) All fire independently.

THE MAJOR RESTRICTION is that the general renewal model is a superposition
of many terminating renewal processes.

THE SCOPE OF THE STUDY is to show that the basic assumptions of current combat
models do not hold for large numbers of combatants.

THE STUDY OBJECTIVES are to show that many factors cause large scale battles
to be a number of simultaneous and/or sequential smaller scale engagements
and that use of current deterministic Lanchester models is incorrect.

THE BASIC APPROACH is two fold. First the Lanchester model applications are
examined to show fallacies. Second all known tabled results and curves of
particular examples are provided to support the theoretical discussion.

THE STUDY SPONSOR is TRAC-WSHR.

THE STUDY PROPONENT is TRAC-WSMR.

THE ANALYSIS AGENCY is TRAC-WSMR."
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NOTATION

Where multiple definitions are given, the context will make clear which
one is used.

A - designation of one side in the combat, or
- the event of a win by side A

Ak(t) - rv, the number on the A side at time t, in the SL or GR model with
ics,(ka?)kbo) (when k = 1, subscript dropped), jointly distributed
With Bkt )

a - value of rv, Ak(t)

af - the number on side A at the time the A side loses (breaks and runs)

a0 - the initial number on side A (at time zero)

B - designation of one side in the combat, or
- the event of a win by side B

Bk(t) - rv, the number on the B side at Lime t, in the SL or GR model with
ics (kaokbo) (when k = 1, subscript dropped), jointly distributed
with Ak(t)

b- value of rv, Bk(t)

hf - the number on the B side at the time the R side loses (breaks and runs)

b- the initial number on qide B (at time zero)

cov(XY) - covariance of rvs XY

c - arbitrary constant

D - the event of a draw

d - arbitrary constant

E[XJ - expected value of rv X

E{Xl - estimate of the mean of rv X

e - arbitrary constant

F c - complementary distribution function of rv X

f - arbitrary constant

f'(t) =df(t)
dt

fx(x) - pdf of rv X

GR - the general renewal model



gi(t) - average reinforcement rate on the i--h- side, i = A or B

ic - initial condition

ilt - interfiring Lime

iid - independent, identically distributed (used with rvs)

k - positive .integer, either an index, or
- the number of the transition step in sLate-space

L - the Lanchester model

mA(t) = E[A(t)], marginal mean value function of A(t)

MB(t) = E[B(L)], marginal mean value function of B(t)

m, - portion of force engaged on A side in Springall model

N(L) - rv, number of events which have occurred at time t in a
GR renewal process

n(t) - a value of Lhe rv N(t)

n(t) = EIN(t)], mean value function of N(t)

n, - portion of force engaged on B side tn Springall model

ned - negative exponentially di.stributed

P(i) - probability that the i ,gide wins, i = A or B

P(i,t) - probability that the i qide has won by time t, i = A or B

p - marksman's kill probability or

p(i,t) - pmf of rvs A(L) and B(t) respectively, i = a,h

p(a,tIA) - conditional pmf of rv A(L) :iven A wins by time t

p(b,tIB) - conditional pmf of rv B(t) given B wins by Lime t

Pi - the constant kill probability of all contestants on the i=' side, i=A or B

pi(t) - time-dependent kill probability of all contesta.nts on the i-h side,
i = A or B

Pk(a,h,t) - P[Ak(t) A a, Bk(t) = b, ic(kao,kbo)] (for k I subscript is
dropped)

pdf - probability density function
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pmf - probability mass function

q = 1 - p, marksman's failure probability or
= aL/(a+s )

rhs - right hand side of an equation

ri- fixed individual firin, rate for side i, i - A or 9

ri(t) - time-dependent individual firing rate for side i, i = A or B

ri(a,b,t) - i's general kill rate (other side's attrition rate), i = A or B

r(y) = fz(y)/Fc(y), OR model individual instantaneous kill rate

rv - random variable

a
SA(t) = a 0 ap(a,O,t)

SB(t) = 3 •0 bp(O,b,t)

b=[

SL - the Stochastic Lanchester model

TD - rv, time duration of combat

TO1i- rv, time duration of combat ýiveni a win by i =A,B or a draw, i= D

t - time

tf- time at which 1, battle. termilnat•

t- time at which i renewal event occurg

ViA(t)] - variance of the rv A(t)

Wk(t) - rv, superposed interkilling times

X - rv, marksman's ifLt

X. - rv, ift of each member of the 1-h side, i A or B

Xk(t) - rv, a transformed version cf Ak(t), k = 1,2,...

x - a value of Xk(t) or
- a value of X or

- a value of Xi

x, - a particular value of x

x2 - portion of initial x force initially engaged in Springall model

x(t) - the number on side A at time t, in the L model

xL(t) - solution to the standard 1. Square Law equations with ics (ao,bO)
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Y(t) - rv, marksman's backward recurrence time at time t

Yk(t) - a transformed version of Rk(t), k - 1,2,...

y - a value of Yk(t) or

- a value of Y(t)

Yj - a particular value of y

Y2 - portion of initial y force initially engaged in Springall model

y(t) - the number on side B at time t, in the L model

YL(t) - solution to the standard L Square Law equations with ics (a 0 ,b 0 )

Z - rv, embedded killing process in the GR marksman model

Aa - change in a

AA () = mA(t) - x(t)

B (L) = MR(t) - y(t)

Ai( (' (t) given a win by i, i = A,B

= PA'/W A A's individual kilt rate (attrition coefficient for B side)

= p5B / AB B's individual kill rate (attrition coefficient for A side)

y - non-combat attrition coefficient, B side or
- Springall attrition coefficient

A(x-a) - Dirac Delta function = ý at x = a
= 0, elsewhere

S- a constant, or
- Springall attrition coefficient

c - an arbitrary positive constant

- mean of rv X

n y - Y,

- an arbitrary positive constant 4 1

e - the probability that an A side target is not acquired by a B side firer

X - the probability that a B side target is not acquired by an A side firer

u - - E[Z]
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U1 - mean value of the ift on side i for the SL or GR model, i A or B

Uk - k. Lhmoment about the origin, k 1,2,...

S x -x

En - an arbitrary positive constant 4 1

P - non-combat attrition coefficient, A side

ok - Rtandard deviation of the losses on the A side in the SL process at time
of the k h event

- converges in distribution to

- converges in probahility to

- cartesian product

,- defined as equal to
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PART ONE - THEORY

I. INTRODUCTION

Great emphasis is placed in this document on assumptions, results, and
concepts as they relate to small-to-moderate size battles. The reason for
this is that the basic assumptions of current combat models do not hold for
large numbers of combatants. Terrain compartmentalization, weapon ranges,
terrain obstacles, weather and many other factors cause large scale battles to
be a number of simultaneous and/or sequential smaller scale engagements.

Much of the current effort in weapons systems analysis or in combat
analysis relies on ,tilization of various deterministic Lanchester (L) models
of combat. It is important to emphasi:pe at once that the models discussed
here are only concerned with the progress of the fire-fight once it has
begun. All pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions (e.4. withdraw,
surrender, etc.). This means that optimization techniques which fnflttence
pre-combat tactical decisions or pre-determined decisions to terminate are
excluded. Optimization employs Differential Game Theory, Dynamic Programming,
Game Theory, Control Theory, certain mathematical programming procedtures or
possibly other optimization techniques and requires good fire-fight models Lo
operate on.

The most critical element in fire-fight analyses is the assigninent )f the
attrition coefficients. For %xample, the Lanchester Square Law different.ial.
eqvations (see reference [t01 ) governing the soluition are

='( t) -S v , y '(t ) = -

where x and y are taken to be the average ntumbers remaining on the two sides
(A and B) respectively and where o and a are the B and A sides' attrition
coefficients (A and B individual kill rates) respectively. It is customary to
use p A/i' for a, where PA is the individuial single roond kill probability on
the A'siŽe and 0 is the individual mean interfiring time on the A side. AllA
individuals on each side are assumed to be identical. A similar set of
assumptions and definitions go with the B side.

A. The Assumptions Implicit in Using Lanchester's Equations

The analyges in this paper are based on the followin,, additional
assumptions, whtch are explicated for the Squtare Law for the sake of specificity.
The details of other models will vary, btit the aialvsis is ;imilar mnd thP
attrition coefficients are defined in a manner appropriate to the model boiu
considered. These assumptions are the basis for stnin I, nodels mentioned above.

(1) The true model which is to be approximated, is termed a General Renewal
(GR) model, and is illustrated in Figure I below. The characteristics of this
model are:

(a) There are initially, a 0 on the A side and h0 on the B side.
(b) Every member of the A side picks a B opponent at random (all are

* Numbers in brackets [ J refer to the list of references starting on p. 40.
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visible and in range) and fires with a fixed kill probability PA on every
round fired with a general interfiring time (ift), which is a random
variable(rv) XA with mean P . (Because a general rv has memory some
particular distribution of tire is required for the GR model to be formulated
mathematically. Different distributions of fire will, in general, give
different results. However, no matter what distribution of fire is assumed in
the GR model, as long as all combatants have a target (even if all are firing
at the same target for example) the GR model reduces to the SL model when XA
and XB are assumed negative exponentially distributed (ned). Thus we see that
for L and SL the restriction that all opponents are visible and in range can
be reduced to simply that every firer can see and possibly hit at least one
target at all times.) For the GR model, it must be specified not only how
many opponents are targets but how the fire is distributed over targets. This
makes for possibly many different CR models for every SL and corresponding L
model. To our knowledge this has not been pointed out before.

(c) Each marksman fires until he is killed or makes a kill (at which
point he immediately shifts to a new target picked at random and resumes
firing). The ammunition supply is unlimited.

(d) All fire independently.
(e) Similar assumptions apply to the B side.
(M The battle continues until one side is annihilated.

A side B side

Figure 1. The GR Model

The derived quantities of interest are, A(t) and B(t), rvs which are the
remaining numbers on each side with e.xpected values FfA(t)] = ma(t) and
ERB(t)] = mt(t). We note that these are ,nar7inal rvs and means from a joint
distribution on some state-space.

This situation is a superposition of many Lerminating (non-classical)
renewal processes (i.e. each marksman's firing process is a renewal process
which terminates hut, in general, not at one of his firing epochs). The
reader is reminded that an ordlnary general renewal process is one in which
the times between events are independent, identically distributed (lid) rvs
and that never terminates.
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The only solutions to this model have been for the one-on-one duel (see
reference [11) and for the two-on-one duel (Cafarian and Ancker (1984)).

(2) It is assumed that, if a 0 and b 0 are very large, mA(t) and m,(t)
are well approximated by the mean value solhtions to the "Stochastic
Lanchester" (SL) equations which were first given a thorough treatment by Snow
(1948). The SL model is exactly the GR model except that ifts are assumed to
be negative exponentially distributed (ned). The ned assumption with its "no

memory" property greatly simplifies the analysis hut does not make it trivial.

(3) It is assumed that for large aO and bo, the L model solution is a
good approximation to mA(t) and mB(t) (the mean value time traces) of the SL
model. Lanchester (see reference [101) first proposed his model in 1916 and
recognized that since it was deterministic and continuous in x,y and that the
real process was stochastic and discrete, L should he considered an
approximation of the stochastic process mean value.

(4) Finally, it is assumed that for large a0 and h0 the SL and GR models
have negligible variance for much of the battle.

It is noted, parenthetically, that we consider all these models, (L, SL
and GR) to be logically subsumed tinder the title "Lanchester" models. Thus SL
and GR refine the original concepts of Lanchester in the direction of reality

at the obvious cost of greater complexity.

It is this set of assumptions, (1) through (4) above, which are

thoroughly examined, particularly the basic premises which purport to justify
Lhem. The main text (Part One) of this paper will examine all known

theoretical results on this subject and in Part Two we collect, organize and
reduce to common notation almost all known Labled resultq and curves of

particular examples. These support the theoretical .itcuIssion.

The theoretical disciission wilt proceed in reverse order from aqsstmption
(3) backwards to (2) then take tip (4) and close by cons idering other t(eastire"
of effectiveness. First, several preliminary matters will he oxamined.

B. The Lanchester Square Law

It will he helpful to look at the solution to the Lanchester Square Law
differential equations given above. These are the parameLtric equtatlons

x(t) = a0 cosh /m"B t - /04a b () ;ith v*&T, t

y(t) = b0 cosh viT t - vq/p a0 sinh 'i0 Lt

and the phase-space equation (which is arrived it hv dLvidinf the second

differential equation above into the firqt and solvP'g,

y(t) ((a/6)- x 2 (t) - '21 + ' 1/2

all of which are only vaLid in the interval (0,tf) where,

* References given by name(s) followed by a date are Itsted In the Annotated

Bibliography beginning on p. 42. If the date is replace-d by an asterisk (*),

the material is new in this work.
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tai1(fW i >, Bwin, wth 2 2 1/2

tf - (•-1a-8) t,-'(,m o/bo), if A v o > 1, B vim, wt (b6 - a(/)2 survivors

- (IW) c-' 1 (v'8-a bo/o). if 4-, bo/ao < 1, A wins, with (ao2 - bh) 1 / 2 s•rvivors

if ASL bo/a 0 = 1, Jiich is a draw with no survivors.

At time tf, the combat has finished and one (or both) side(s) is annihilated.
Beyond that time, the only interpretation which can be useful is to assume the
states remain frozen at their tf values. This is illustrated in Figure 2 below.

zrt

tit I IM

pno~~laesoaaCe .race -

Joint WWIac0
" QC tf). e (t).a"

/3

' Il - -

I-M

(d)i

Saro as situation in (a) (C)

Figure 2. Typical Solutions to the Lanchester Square Law E¢quations
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The important point to observe here is that at tf the equations are no
longer valid as they show an upturn on one side (impossible as there are no
reinforcements) and at exactly the same time the other side starts to go
negative (again an obvious impossibility). The only exception to this is when
parity exists (i.e. a0 4V - b0 /8 ); then tf is infinite and the situation is
as depicted in Figure 2(c).

C. Properties of the Equivalent Stochastic Solutions

It is useful to recall some properties of the joint probability mass
function (pmf) of A(t) and B(t) (these apply equally well to the SL or GR
models).

On the time-evolution joint probability state-space diagram (see Figure
3), the only possible states are at the lattice points (the intersections of
the coordinate lines shown). At time t, the probability of being at a general
lattice point (a,b) is designated by p(a,b,t). The states along the a-axis
and the b-axis are absorption states (all opponents have been eliminated).
All other states are transient. The state (0,0) can never be occupied. At
time zero, the process is at (ao,bO) with probability one. For

b

mean value trm

bt (%,bo)

S 0

point (mAt),mB~t))is wherethe mean alue funtio) peresth(tat-sa

I T T I -Ia

Figure 3. The Time-Evolutton Joint ProhabiLtty StLate-Space

all t > 0, all allowable states have non-zero probability of occurring. The
point (mA (t),mB(t)) is where the mean value function pierces the state-space
plane. fn the limit as t + -, all transient states have zero probability of
occurring and all the probability mass is located on the a and b axes. This
is still a joint pmf but, of course, all probabilities are just on the two

-...... ......... ..5 -. . •- -. . ..



axes as shown. The probability the A side has won by time t is just the sum
of all the probabilities on the a-axis, and similarly for the B side. The
total win probabilities are these functions evaluated at t - - .

There seems to be some confusion in the literature about the joint pmfs
shown, the marginal pmfs and the conditional absorption pmfs. In Figure 3 (at
any time, t) the marginal pin for A is simply all the probability mass
projected onto the a-axis and similarly for B. Given that A has won, the
conditional punE is found by dividing each mass point on the a-axis by the sum
of the mass points on the a-axis and, similarly for B. Particular confusion
appears to occur in connection with moments of the three possible pmfs (joint,
marginal and conditional) especially in the terminal state (t = ) and it is
important to keep clearly in mind which is intended.

On the time-independent joint probability state-space (see Figure 4) the
diagonals labelled k - 1,2,..., (a 0 +b 0 -1) contain the possible states after the
first, second, third, etc. events have occurred. The probability masses located
on each diagonal (k 4 min (ao,bo)) form a proper pmf and add to one. For k >
min (a 0 ,bo), all absorption probabilities associated with smaller ks must be
included with those on the diagonal to form a proper pmf (see e.g. the broken
line for k = a 0 in Figure 4.) A random walk may be visualized on this space with
each step either to the left or downward and terinnatin' on the a or b-axis.

bi

t 7" k=1

o% 1 I
k7o1 b-Ik0 k=b 0

-- = o÷•- i \k Go k= bo

Ftgtr+.. 4. The TIme-Independelt 1oint Proahti Ltv State-Space

It is important to note here that the concept of "breakpoint" (i.e.,
defeat before annihilation) complicates the mathematics hbzt does not change
the conclusions of the following analyses in any material way. Breakpoints
create absorbing barriers at specific positive valuees of a and b (af less than
a 0 and bf less than b0 ). This means that absorption prohahilities hecome
significantly large earlier in the battle and their role in the differences
between L and SL measures of battle outcomes Is effective earlier.

We now proceed to examine important theoretical points aho.it the
assumptions outlined above.

I1. THE ERIOR IN CONSIDERING LAUCUESTER' S SOLUTIONS AS AN APPROXIMATiON TO
STOCHASTIC LANCHESTER MEAN VALUE FUNCT[ONS

Before proceeding with details, it is noted that essentially the question
here is - how well does the L joint trace (e.g., Figure 2(d)) approximate the
corresponding SL mean value trace of Figure 3 (or equivalently their marginal
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or phase-space projections)?

In an important paper not readily accessible and thus largely unnoticed
Hardeck and Hilden (1967, equations (10), p. 5) have shown, when their result
is expressed in terms of the number of survivors, that

a 0 b 0

Mit) ,- I I rB(a,b,t) p(a,b,t) =-E[rBAt),B(tt)A ~afa f+1 b-b f+1

a 0  b0

mI r A (a,b,t) p(a,b,t) = -EfrA (A(t),B(t),t)
aa a+1 bmb +1

for a general SL process (with breakpoints) and where kill rates (rA,rB) atio
depend on a and 8 even though this dependency is not explicitly shown. Later,
for the same general SL process with kill rates not a function of time and
where the combat goes to annihilation, Clark (1969 equations (73), (74) and
(75), p. 79) has derived these same eOpressions eKcept, of course, that the
kill rates were not dependent on time.

Although neither Hardeck and Hi lien nor Clark. ;av so, these expresstons
conclusively prove that compared to any equivailent L formulation, the SL form
will be different.

This comes about because the right hiand side (rhs) of equation (1) cannot
be made to look Like the rhs of equivalent I. equ-ttons. There are two reasons
this cannot be done. They are:

(1) There are no absorption probabilities utilized in the SL formulatfon f:)r
computing the expected kill rates because kill rates ir?, by deFinition, zero
aSi soo0 as one side is annihilated (or reaches its breakpoint).

(2) A(t) and B(t) are correlated.

In any possible L model one or the other or both of these Fac-ts will cre;it, a
difference between the L differential eqiiat•ons ind the equtivalent SL mean
value differential equations.

This will be illustrated below by all parLti,-itir e'a,.ploq in the

literature known to the authors.

A. The Square Law

1. Time-Indepeadent Kill Rates

The first analytic attention to this problem was given by Snow (1948).
However, he first gives a more general L problem (see equations (3) and (25)
in Snow); namely
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x'(t) - -Px - 3y + gA(t)2

y'(t) -Yy - ax + gB(t), )

and then derives (see p. 24, Snow) the more general SL equivalentb0
M'(t) mA - BB + 4ait) + B • bp(O,b,t),

b=l

(3)
a

0

mS(t) = -YMB - atmA + gB(t) + a L ap(a,O,t)
a=[

where p and Y are non-combat attrition coefficients and 9A(t) and ,B(t) are
reinforcement functions.

It should be observed, in passing, that Tompkins (1953, p. 37, equation
3.2) rederived these results (with A(t) = gr(t) E 0), apparently bein(,
unaware of Snow's priority.

The Square Law equations are easily derived hv setting p = Y = •A(t) =

g (t) =_ 0 in equations (2) and (3). Note that the L differential equations
differ from the SL differential equations by the terms containing ahsorption
probabilities. The SL Square Law is also easily derived from equation (1) by
setting rA(a,b,t) = rA(a,b) = aa and rB(a,h,t) = r (a,h) = Bb.

We note from the general differential-difference %tate equations (Clark
1969, equations (51) through (57) pp. 69,70) with Square Law rates inserted
that the state probabilities have the following properties (see Figure 5):

(1) The absorption probabilities (p(a,O,t), p(h,0,t)) shown in F[gure 5(1)
are monotonically increasing functions with value zero and slope zero at t = C
and asymptotes p(a,O,-) and p(O,b,-). The curvature is initially positive
and changes to negative.

(2) The initial state probability, n(an,b 0 ,t), is a monotonicallv decreasing
function with value one and with slope -(a.oa + h 0') at t = 0 and is
asymptotic to zero at infinity. The curvature Is always positive (see Figure
5(b)).

(3) All other state probabilities have valtes zero and slope zero at time
zero and are asymptotic to zero at infinity. The curvature is initially
positive, changes to negative then goes back to positive (see Figure 5(c)).

These facts along with the equations for the mean value functions for the
Square Law show that mA(t) and mto(t) have values ao,h 0 and slopes -6h 0  and
-•a0, at t - 0 and are monotonically decreasing to positive asymptotes with
slopes zero at infinity. They also 'have positive curvature everywhere tending
to zero at infinity.

The Square Law L equations have the same initial values and slopes as the
SL mean value functions and have positive curvature (hbtt different from SL)
for positive t 4 tf. It should he noted that in comparing all L and SL pairs
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or st

p40.b,t)a

°o o t

(bi

a el O.a0

IFAUISo.b•O.bo

(c0

Figure 5. Characterist Ics of :-, Sqi~rI iaaw ltate Probahi lities

of equations, x is always identified with mA and y with mB. This [s the onl[;
rational interpretation of and , andt has always been so reconnized hy most

analysts including Lanchester himself is mentioned earlier. Also it should he
observed that mAil), mR(t), X(t) and y(t) will he wriLten as mA, mB, x, and v
on the rhs of, all equations for brevitv, always keeping in mind that thev are
functions of time.

With these conventions in mind, it is clear that onuatfons (2) and (3)
differ only in that the rhs of the SL equations containi terms proportional to
the average number of survivors. Clark (196q) has dubbed these the "hias"
terms of the SL equations. This terminology is dropped in this paper because
bias has a well known, rigorous meaning in statistics whic:h does not -ipplv
here as this paper deals with purely probabiListic models with no quiestion of
statistical sampling involved. The focus here is on the difference in the
solutions to the differential equations (i.e. the difference between the 1.
functions and SL mean value functions).

The principal point to note here Is that for t L 0

I > p(a,O,t) > 0 , 0 < a 4 a 0

1 > p(O,b,t) > 0 , 0 < b < b0

and these probabilities are monotonically increasing (their derivatives are
positive for all t). Thus, althouygh mA(t) and X(t), and mr(t) and y(t) start
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at the same point at t - 0 (their initial conditions require mA(O) = x(O) = aO
and mB(O) - y(O) - bo) in general, the L and SL mean value trajectories will
differ for all t (the only exception is that they may cross, and therefore be
equal, at certain specific times).

2. Time-Dependent Kill Rates

Hardeck and HiLden (1967, p. 8) have shown that for time-dependent kill
probabilities PA(t) and pB(t) and firing rates rA(t) and r3(t) that

Mý(t) = -pB(t)rB(t) [mB b p(O,b,t)]
b=1

m'(t) = -PA(t)r A(t)[mA - 0 a p(a,0,t)]
a=1

The corresponding L equations again only differ by the terms containing the
absorption probabilities, and the comments in section k, 1. above apply.

This is fundamentally different than the other processes that are
examined here in that the killing process embedded in the Firing process is
nonhomogeneous Poisson and is therefore not renewal (i.e., it is
not lid).

B. The Square Law with Breakpoints

Craig (1975 equations (101), and (102) pp. 160 and 161) has shown

bO a0

mý(t) = -6mB + { I bp(afb,t) + bf ý p(a,bf,t)},
b=bf +1 a=a f-+1

(4)

'(t) = -amA + (I I ap(ahft) + af P(afVh,t).

a=af+1 h=b f+1

The corresponding L equations are the same as the annihilation case except
that af and hf occur in the boundary conditions in an obvious way.

Although the sums on the rhs of equations (4) (which produce the L-SL
differences) are more complicated than for equations (3), the conclusions ire
not altered materially. Again we get the simple Square Law by letting af = hF
= 0.

C. The Linear Law

For the well known L Linear Law given by,

X'(t) - -Oxy, y'(t) = -uxy, (5)
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the parametric (time) solutions are, for aa 0 * $bow

(0b 0 - c 0a)a0

8b0 exp((1b 0 _ Mao0 )t] - aao

(a 0 - B 0 ) 0
aat 0 exp[(aaa0 - 6b0 )t] - 8b 0

and when aa = Bbo, x(t) = a0/(caa 0 t + 1), Y(t) = b0 /(Bh 0 t + 1). The phase-

space solution is

y = (a/B)x + (Ob0 - Caa0 )/V.

All these solutions are valid in the interval (0,tf) where t = Tf

cLa0 > Bb0, A wins, x(-) = ( 0a - 3b o)/c, v(co) = 0,

aa0 < 8bo, 8 wins, x(-) = 0, y(-) = (8b0 -a a 0 )/8,

caa0 = $bow draw with no survivors, K(-) = Y(0) 0.

Clark (1969 equations (80) and (81) on p. 81) has shown that the equivalent

SL differenrial equations are

M'(t) = -8EF[A(t)B(L)] = -8mAmR - I -ov[A)B(L),A 8cv[(t)(LI

mi'(t) = -aE[A(t)B(L)j = -amAmB - X cov[A(t)9(t)J . (1

It should he noted here that the phase-space ,olutton for equations (5)

derived by dividing the first equation by the ;ocon-i equation and -olving are
exactly the same as obtained by the same proceqs in equations (6). Other

versions of the Linear Law will give the ;ame phase-space equtat[ons, htiL
different time traces. In general, replace xy on the rhs of eqtiations (5) by

any general function g(x,y) and a type of Linear L.aw will resl[t. The fact
that the L and SL time-independent phase-space 'q|i;at ons -ire exa(ttly the same

(a straight line starting at x(0) = a 0 , Y(O) = h ) nd mAi") =a, mB(ON ) = b
and with the same slopes) does not men,, the lines are IdentI(-al. The . lines
terminate either on one of the axes or the orf:>in, the S1. lines terminate
at (mA(-),mR ()) which are always positive (see Figure (6a)). rInleqs
otherwise slaLed when "Linear Law" is ,,sed it will mean the versions ,iveiv La

equations (5) and (6).

Clark did not actually show the second version of the rhs of equations

(6), but they are obvious from basic probability theory. Again the L and the
SL mean value differential equations differ, this time by the covariance
terms. Thus the SL version could only he the same as the L version if A(t)
and H(t) were independent or uncorrelated. Since all the p(a,h,t) functions
with a,b * 0 are known (Clark (1969), p. L02 equation (106)) and
are not of the form p(a,t) p(b,t) (i.e., product of the marginal
probabilities), then A(t) and 8(t) are not independent and therefore A(t) and
R(t) may, but, in general, will not have zero covarianc-o. Thus a*lthotith the
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(a)
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0O __x 'm A

(b)
OL Equation Terminal Point

* SL Equation Terminal Point, (mA(03), m8 (03))

Figure 6. Comparison of L and SL So •tlons f)r Ole ,Lnea~r %aw.

phase-space equations are coliLnear, the mean v.ilae Lime-lraces for h. and ST,
differ (see Figure 6b).

Equation (6) may easily be derived from e(lquaLions (1) by letting
rA(a,b,t) - rA(a,b) - tah and r (a,b,t) = r.,3(a,h) = Sah.

D. Too Special Models

(1) Clark (1969, p. 1.51) has investigated a special. case where
acquisition probabilities are involved. The L equations are
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x'(t) - -y(I--ex) = -By + 86y ,

(7)
y'(t) - -- x(1-A•) = -ax +x ,(7

and the equivalent SL equations are

m'(t)= - [ ) - A(t) -am + am '[eA(t)i

AA t

+ 8 cov[B(t)e A( (8)

-(t) =--aEEA(t)(I-XB(t)1 = A + IB ( 9t)I

+ a cov[A(t)X B(t),

where 0 < 6,A < I are target noriacquisitioi prohabilities for A and I
respectively.

Again, there is a difference in the two versions which is even more
mA

pronounced as E[OAJ I cannot yield m . We note that equation (8) may he

obtained from equations (t) by letting rA = aa(l-Xb ) .... r, = Sb(l-6a).

(2) Springall (1968) has thoroughly in,'P-tigated a rather complc-ated
model whose L formulation is given by,

x'(t) = -Bxy - 6v,

y'(t) = -axy - yY,

where 5 and Y are additional fixed attrition roefftelCient5. The initial
numbers engaged are x2 and y2, which are fractions of the initially availahle
forces (ao, b0 respectively). The remaining f)rces are in reserve and ire
deployed one by one as the Initally engaged forces are redLdced ill suich a
manner as to keep the engaged forces at tevei- <, and v, respectively, until
all reserves are com~mitted and then the battle proceeds- ither to annihilation
or to a specified breakpoint.

The corresponding SL mean value ftinctions ire too complicated to he
reproduced here but examples of the ouitcome of ;itch battles are -4iven iN
Part Two and show suhstantial L function - SL mean value Function diffeeronces.

E. An Analysis of the L-SL Mean Value Function Difference

Define the L-SL mean value function differences to be

AA(t) 
M- A x 

(9

-m - Y
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I. The Square Law

Craig (1975, p. 68) has shown that for the SL Square Law

A (t) = ft IsB(T) cosh /a6 (t-r) - /--a S (r) sinh /VýB(t-r)}dT
A 0 B A

A (t) = ft {SA(r) cosh /V6 (t-T) - a/I- S (T) sinh /VB (t-T)}dT
B 0 AB

where 0 < tL t,, and

a 0

SA(t) = a I ap(a,0,t),

a l

b 0

S (t) B- 1 bp(O,b,t).
b=l

SA(t) and SB(t) are the terms in the SL differential-diFference equations for
the ordinary Square Law formulation (aitising L-SL differences. Strictlv
speaking, Craig uses the breakpoint model for equations (9) and (10) hut this
includes the annihilation model we are considering. Craig investitgated (10)
hy using various particular values of a0, ho, a, B. We shall go a hit ftrtLher
here to draw some more gener,•4 concltusions.

Euuations (10) may easily he rewritten as

A (t) 0 [S (T) s ( I.X - IdA A
A A(t) -f f - (T/ /a S S( ) ( )Ipf / V7 (t-t)dT

+ f~S )+ /6/a" SA(r)I e, cp [- a (-tJ1/,

As(t) -- a/B-" {-ftO [Ss(Cr) - ,/8/a7 SA(r)j e~p [¢7•(t-r)ljdr

+ fot [S( + /6/a7 SA(T)I ex(p [- /uBl- (t-r)Jdrf/2.

Now, by the Second Mean Value Theorem eqtat fon (II) can he written a--

AA (t) -{1-exp(- /V;t)}(II(c,t) + 12 (d,t)}/2V/a- r( ,

AB(t) = {[-exp(- /at-)}{-1I((-,t) + [2(d,t)}/26, where

S1i(c,t) = [S9(c) - /1-a- S A (c)jexp(/a6t),

1 2 (d,t) = S (d) + /7-1- S A(d), and

0 < c,d < t < tf*

p(a,O,t) and p(b,O,t) are positive, monotonically increastng ft|ncttons of t,
as previously mentioned, and thus SA(t) and S (t) are also. It is noted that
although SA(t) and SHt(L) are functions of a and R, they are :ihsolutelv
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a 0

bounded for any t > 0. This comes about from the fact that I p(a,O,c) - P(A),
b0  a- l

the probability A wins, and I p(O,b,-) = P(B), the probability B wins.
b-l

Therefore, certainly SA(t) < a aoP(A) and SB(t) < 8 boP(B) where P(A) + P(B) - I.
Thus, by inspection of equations (12) and noting that 12 (d,t) > 0 for t > 0,

(1) If either A or AB is negative at any time, t, (or any range of
times) then the other mist be positive.

(2) If A (t) or A B(t) is zero for some particular values of a,a,aob,, and t,
then the oih er must be positive at these points. Such points are crossLng
points for the A with the zero value.

(3) Both differences may be positive but From (M) above they cannot both he
negative at the same time. In particular they are both positive for strict L
parity (i.e. aO = bo, a = R).

And from many particular examples in Part Two-I, we have

(4) A or A may be negative, positive or zero and these diFferencpe can be
as higA as agout 30 or 40 percent of the initial values.

Furthermore,

(5) Although all the above applies for t ' Lf, in Fact, it can bh so',n they
are also true for true t > tf.

(6) Finally, from (1) thru (5) ahov(e, contrarv LO some statements in the
literature (for example, see Farrell (I976, p. 5)), the T. enirations -,innot bho
,ised as universal bounds on the SL me:tn valiie Funct(ions.

2. The Linear Law

Taylor (1983, equation 4. 12.24 p. 505) has shown For the Line:ir Law that
it is easy to derive the relation A A(t) = (/a )A (t) which clear Lv i rid i,
that, in this casP, the differences Aro •[wav-op tho same ifn Inid .a

crossover in one is accompanied hy a crossovr in tihe other at exact'lv Ltie
same time.

F. The Difference Near Time Zero for Certain Special Cases

Many authors have noted that For the Sii;tre Law (eveni with variations
such as break-points or reinforcements) the I, ind ST. milein value dif•Front i.1
equations are identical iF absorption prohabitiLts -ire taken to he neTigib[,
that is set them equal to zero. This only makes sense for very large initial
numbers and for early in the comhat. Snow (1948) first mentioned this and it
was later exploited by Marshall (1965), Clark (1969) and Koopman (1970).

Grainger (1976, Appendix G, pp. 87 and 88) has shown that for L models
given by

X'(t) - - cxCvd V'(t) = -i-avx , (13)
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where c,d,e,f are positive integers or zero, the corresponding SL mean value
functions (near enough to t-0 so that the absorption probabilities are
negligible) are given by

mA(t) B -BE[AcB, d(r) f= --aE[Ae3f 1. (14)

In general, A(t) and B(t) are not independent, and therefore functions oF
A(t) and B(t) are not independent and the only values of c,d,e, and f for
which (13) and (14) coincide (near t=O, of course) are (c=O, d-1), (c=l, d=O)
and (c=O,d=O) for the first equation along with (e-0, f-1), (e=[,f=O) and
(e=O,f=O) for the second equation. This gives nine possible combinations of
which only (a) (c=O,d=1,e|1,f=O), the standard Square Law and (h) (c=d=e=f=O),
the Linear Law model where the battle is a sequence of one-on-one duels, are
interesting situations. For these, the difference is nearly zero in the
neighborhood of L-0. For the general Linear Law case (and other situtations)
this indicates that there may be large differences even near time zero. Snow
(1948, p. 25) earlier came to the same conclusion for the Square Law.

G. Sumary

Summarizing the major points in Lhis section:

(1) All L-SL mean value equiivalent pairs differ for a[t times except at
possible crossing points. These differences mav he very large.

(2) At least for the Square Law, Ohp I. trai*ptortos ire neither a tiniversal
upper or lower bound of the SL mean value trajectories.

(3) Even near time zero, the L and SL mean valie traiectories may
differ considerably (they do not differ materially for •he Square Law and tlh-
sequence of one-on-one duels version of thP Lin.tr Iaw).

III. FALLACIES IN CONTINUOUS STATE-SPACE APPROXIMATIONS FOR THE SL MEAN
VALUE FUNCTION

There have been several attempts to show LhaL specdfic S., models converge
in probability (in some sense) to L equivalents. This is another effort to
show that L is a good approximation to ST, for Large numbers. These .att'mpts
have been widely misinterpreted and generally misunderstood. Tt should he
understood that our analyses here reinforce the resuilts in Section TT above.

A. Rigorous Convergence In Probability

Etter (1971) and Karr (1976) have shown rigorousiv that transformed
versions of the SL Linear and Square Laws converge in probability to the I.
laws. Karr also shows that transformed Mixed (one side Linear, one side
Square) and Square Law versions with continuous reinforcement also converge in
probability to the corresponding L laws. Their proofs differ (Karr uses
probability arguments and Etter relies on function theory) hit the
transformations are essentially the same. In both, a state space with initial
conditions (ics) of (a 0 ,b ) is expanded in discrete lumps (keeping the ratio
of ics constant) to ics (9a 0 ,2b 0 ),(3a 0 ,3h 0 ),... ,(kao, khn). In Karr, the

rvs Ak(t), Bk(t), where the subscript k refers to the kLh space in the
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sequence above, are then transformed by

Xk(t) - Ak(t)/k, Yk(t) = Bk(t)/k. (15)

This takes the expanded space with lattice points defined on all non-negative
integer pairs (ab), except (0,0), such that a 4 ka , b 4 kb0 and transforms
it to a new (XkYk) space with ics (ao,ho) and exacly the same number of
lattice points as the untransformed space hut now they are spaced l/k units
apart iN both the x and y directions (see Figure 7). Of course, the mapping
in (15) brings exactly the probabilities in the untransformed space onto the
corresponding lattice points in the transformed space.

It is very important to observe that in any transformation of the type
given by equation (15), if a comparison is to be made with the corresponding
Lanchester equations the same transformations must be made on the L equations
(see Figure 7, in which KL and YL are the standard L solutions).

Etter's transformation replaces ,eq,,ation (15) by Xk(t) = A Ot)ýo/k,

Yk(t) W Bk(t)n o/k, where 0,t00 are positive constants 4 1. He also implies

(correctly) that this transformation is similar to Xk(t) = Ak(t)ýo/k(a 0 + ho),

Yk(t) = Bk(t)00/k(a0 + bo). The corresponding ics on these two differently

transformed spaces are (aOý 0 ,h 0 n0 ) and (a0 0/(a 0 + h0 ), b0 no0/(a 0 + hi0))

respectively and the lattice cell sizes are •)/k by n 0 /k and - 0 /k(a. + hb) by

no, /k (a 0 + bo), respectively.

There are no essential difference, in all these transformations as they
all reauire that the ics on the inttransformed spac(s qo to infinity at the
same rate and that the cells in the transformed spaces retain their shapes
(the ratio of the sides are constant) and decrease uniformly. Thus as k
the untransformed space increases withoint limit and the transformed space
remains the same size and shape hut the nihmbpr of lattice points increasing
with decreasing distances between them, (see Fi,,ttre 7).

It should he noted that for some of Karr's re-sults, he als.,) dilates Lime
by t/k.

To clarify the situation let its iso the K.arr transformation directlv on
the Square Law SL state equations. To tho hf- t knowledtge of the autthors this
has not been done in this manner before. Fi rst we define for an,h 0 and k =

1,2,...

Pk(a,h,L) = PfAk(t) - a, Bk(t) = h, ic(kar)'khr))1,

0), a > ka0 or b > kh0  I
0 0, a < 0 or h < 0

= 0, a - 0 and h - 0

-0, t <0 ,

1, t - O, a = kao, h - kh .
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sL]discrete spaces

Yk('T) b(ka,,kb,)
or

b(I)

00

010

WL continuous spaces

I. - expand ii Ol te I i.to

ri- transformatton (o'tiation (WMl
[[[ - limiting si~tiaLrios Isq k+

Figure 7. Convergence in Prohahititv r-or Everv Fixetd Time, L

Thus,

pkaht) x afp k(a,h+t,t) - p k(a'b't)j

+ Bbrpk (a+1,b,t) - Pk (a,b,t)J (I7)

with ic pk(kaq),kbfl,O) - I (see Clark (1969, p. 69)). Note that For the
limiting process (where k + -) only interior points need he considered andi
boundary equations are ignored. U~sing transformation equations (15), whfich
imply that x - a/k, Vy b/k (where x and y are value-, oF Xkt W and Yk(L)
respectively), and the mapping is on the prohahititieA only (i.e. pk(a,b,t)=

Pk~x-y-18-



apk(XVYt) ax[pk(X,y+1/k,t) - Pk(Xvt)]

at I/k

By[pk(x+l/k,y,t) - pk(x,yt)]
+/k

with ic pk(aO,bO,O) - 1.

The probabilities in equation (18) are on all the lattice points x,y in
the transformed space, where the lattice points are rational number pairs on
the rectangle {[Oa Jx[O b 0P. However, consider any fixed point (xl,y 1 ),
rational or irraLional, in the rectangle. Each is in some cell hounded by the
lattice points For every k (gee Figure 8 helow). The cell sizes are
diminishing as k increases. By replaciog

y

(a0,b0)

(X -1,Y (X,,y, )

(x,y-i)

Ol I CELL

01

Flwire 8. Transformed S1, ;t tt,,-'ýp c,', +it- .. ,h I

x by x I + &, y by y I + n, x + I/k by x I + r, +- 1/k, andI( v + Ilk by

YJ + nl + INk equation (18) becomes

P k (x I + &'yl + rn,L) a=( I +O{P k (x +,yl + n + I/k,t) - pK (x I+F.,v I + nr1,)

at Ilk

+B(yl+n)[Pk(Xl+E + 1/k, Yt+n,t) - P k(xlI+r., Yl+q'0t()9
+ l/k

with ic, Pk(ao,bo, O) - 1.. Note that 0 4 n,ý r. I/k, therefore as

k + ce, n,{*O
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Now, essentially, Karr and Etter have shown that there exists a
continuous function, p, with first derivitives defined everywhere on the
transformed rectangular state space which pk tends to in the limit
as k 4 -. Taking the limit as k . on both sides of (19) and dropping the
subscripts on x and y yields

ap(x,y,t) =- x ap(X,y,t) + py •,Vt) (20)
at ay ax

In the limiting process, the p functions have gone from a joint
probability mass function on the lattice points to a joint probability density
function (pdf) on the transformed continuous rectangular state-space. Thus,
the initial condition is given by,

p(a 0 ,b 0,O) - 6(x - a 0 ) 6(y - h0 ). (21)

Williams (1963, p. 38), Koopman (1970, p. 870) and Taylor (1972, p. 1-44)
have shown that, using the method oF characteristics

By ax -1 0

the solution is

p(xyt) - constant, -for ý,v satisFVintn)

X'(t) -- y, y'(L) = --(x, with, (22)

x(f) a0 , v(O) = bO.

At this point it is useful to ePamilie the? 1. oqiiatL ns corre-sponding to
the expanded space SL eq,,attons. Thev are

S'(t)= - 8 y, v'(t) = -ax

with ics

((0)) v f() kho.

All points on the k = I curves ar tratisposod tipward by a Factor of k.
Corresponding to Xk(t) and Y,(t), K and V mist ho transformed, is folows, t,)
×I = K/k, y = y/k to obtain the equiattons rivi-n above with K,, v, replactlig
x'y and witi ics, ' i(0) = a0 and Y,(O) = bh). So the proper equations to

compare with equation (20) indeed are given by equations (22). rqiiations (22)
are the standard L Square Law equations whose well-known ;olution shall he

called x1 (t). yL(t) with xL(O) - ao and (O)= h. This ,neans that at every

t in the interval (0, tf)

p(x,y,t) - S(x-xT) 6 (y-yl. (23)

-20-



Thus, it has been shown that ;,(t) converges in distribution to p(x,t) =

( x-xL) , that is, all the probability mass is concentrated at the point KL(t)

for every t in (O,tf) and similarly

Yk(t) _D 5(.y_yL)

Now, when a rv converges in distribution to a constant that implies the
stronger condition that it converges in prohability to the same constant, see
[11, p. 2461. Therefore, for 0 4 t < Lf,

Kk(t) -• xLjt). (24

1 (24)

ykWt) -P 1Jt)

Furthermore, in the transformed -pace of the rectangle f[O a 0]x[O,h 0 1},
a statement concerning how expected values E[Xk(t)0 and E[Yk(t)] flehave can he

made. It comes from a consideration of the convergence in probability
equations (24) which, when written ia terms of the definition of convergence

in probability, become (for the A side only)

lir P[IXk(t) - xL(t)0 < l] 1 . (25)

The interpretation of equation (25) is that in the limit as k + - the total
mass of the seqiience of random vartahbes 'i (t)1 hecomes concentrated at

point ;L(t). Now, the X (t) can have positive probability only at Uqicrete

lattice points 0, 1/k, 2Nk,..., a 0 in the hounded interval [0,a0 1. Thts,
as k + -, any probahility at these lattice points (unless xLit) happens to be
a lattice point for certain k values) approaches zero. Therefore, the first
moment contribution about zero From any mass 't lattice points approaches zero

(except, of course, if x%(t) happens to he :it i lattice point for certain
ks). Clearly, then there is a very important conclusion in the transformed
space that

tim [Xk(t)01 = XT(0. (26)

From equation (26) it is clear that EXk(t)I k (0(t) W 4- (k), where
hI c(k) = c . Thus, taking expected valtees in equpation (15) yields

R[A k(t)]
k = xt) + e(k)

or

Ert~k(t)l •k
kXL(t) k" + e(k)

I[ ~-21l-
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and

liE [EAk(t)]lim k xLt) I. Similarly for Yk(t),
k+-

(27)
E[Bk(t)]

lin k yt) W
k+O L

Equations (24), (26) and (27) are the principal focus of this section.
(24) and (26) are a Law-of-Large-Numbers type result for the Lanchester Square
Law. It is important to note that these two equations say that the
transformed SL rvs converge in probability to the L Square Law which is the
limiting mean. Contrary to many statemenIts in the literature (both explicit
and implicit) this does not say there is convergence of the .means (i.e. mean
ST may not tend to L) in the untransformed space. All that can be said about
the untranzformed SL sequence is given in equations (27). It has been noted
previously that for Ak(t), 'k t) that the corresponding L results are kxL(t)
and kyL(t). Thus, equation (27) says that the ratio of expected values of SL
to corresponding L equations go to a limiting value of 1. This does not
necessarily mean that [E[Ak(t)] - kx(t)1 goes to zero in the limit. As a
matter of fact, this difference may go to a constant (Including zero) or
infinity and the ratio still go to 1. The authors believe that this important
distinction is pointed out here for the first time in Lanchester liLerature.
Nothing that has been done to date says anything more about the limiting
behavior of the untransformed differenvo.

Equation (20) has been derived in -everal other less rigorous, intulitive
ways which seem to have concealed Its true mess-;ie as given above. These
shall now be briefly examined.

B. Diffusion Approximations

Equation (20) can be considered a first order liffusion theory
approximation to the SL Square Law process and it (or its implications) have
been arrived at in several nonrigorous wavs.

1. Taylor's Series Expansions

First Is the Taylor's series approtmatlion (see [71). kgaln the SL
Square Law is used to illustrate. The notion Involved here is to replacp thP
discrete function given by equation (17) (with k=l), by a conLtnuous Funct fon
that goes approximately through each of the d'1 screte valiies o)f n(a,ht) on the
a,b axes at each time t. Thus, replacing, dlsrrete a,h by cootntinous x,v
yields

•p(x,yt) 'mCIx(p(x,Y+I,t) - p(x,y,t)]

+ By[p(x+1,y,t) - p(x,y,t)l (28)

Now expand p(x,y+l,t) in a Taylor's series in powers of I around y and
p(x+l,y,t) in powers of 1 around x and retain only the First order terms to
get equation (20) Immediately.
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The usual explanation of when this (i.e. equation (20)) is a fair
approximation to equation (17) is for axt and Oyt to be large. This is only
speculation based on particular calculations. This really means for
fixed CL,O,t that x and y must + , which implies a transformation of the
type previously discussed. Therefore, the usual assumption that this applies
to the untransformed space is not correct. As was shown earlier the only
correct conclusion on the untransformed space is given by equation (27).

2. Approximating Differences with Derivatives

Earlier Willard (L962 pp. 31-33) also arrived at equation (20) by a
somewhat more intuitive approach where he divided the first term on the rhs of
equation (17) by (b+[) - b and the second by (a+l) - a and called these
Ab and Aa, respectively. He then replaced b + I by b + Ab and a + I by
a + Aa and then assumed a and b were continuous and arrived at equation (20)
by letting 4a, Ab + 0. This, of course, is reasonable only for large a,b ant
again amounts to a mapping because Aa and Ab are always ecactly I and can only
be made a truly variable difference by a transformation. His solution is
arrived at in a different manner but is (as it should be) equation (23).
However, he incorrectly states that this implies that l, is the limiting
solution to untransformed SL. Again we reiterate the only conclusion on the
basic SL equation is given by Pimation (27).

Koopman (1970, p. 8' ,nd Taylor (1972, p. [-42) also used this
technique to get equat i on 1-0) and solved it by the method of characteristics.

Helmbold (1966, pp. 632-635) atso tses this tochnique for discrete sLtate-
space and discrer:, time parameter models of marksmen versus passive targ, ets
and many versus many battles to get L equations. This involves similtineoiily
passing to derivatives from differences on both state-space variables and
time. The discrete time parameter in these models comes about because all
contestants on a side fire in volleys at discrete time intervals.

3. Time-Independent State-Space Analyses

Williams ([963, p. 31, et. seq.) has written difference equations on the
moments of the terminal survivor distribution as a function of the initial
conditions for both the Square Law and the Linear Law. This is done by a
r-iadom walk on the time-independent joint stLae-space. For example, he shows
that for the Square Law

Uk(aO,b ) = a .b0 1 (a0-,b0) + 0a Pl b(ab -1) (29)k 01 Ca0 46b( k 0-b 0 a k 0' +1 0

where, u is the k moment about the origin of the marginal distributton of
the A sie survivors (i.e., when A wins). He uses the Taylor's series
expansion in powers of one (as explicated earlier in a different context) and
again retains only first order terms to get the diffusion expression

3Pk(aO,bO) auk_(aobO)
Ob a0 + ea0 ab
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It is recognized, of course, that this really represe nts an equation for a
Karr-type transformation and that a 0 and b0 should be replaced by variables on
the transformed space. He then solves this to show that u 0 . Prob [A wins] = 1,•J22 =2

for all real 1 (an,b) a - (_ /0)h 2 and i, - ; therefore the variance
is zero and furtheormore all Righer moments arouind tlke mean are zero. These
equations are valid only for a 0 V > b 0 /V of course. Similar expressions can
be arrived at for the case where B wins. This merely shows that on the
transformed space the terminal distribution is the terminal Lanchester
point as one expects from the Karr-Etter development.

He shows the same thing for the Linear Law.

Covey (1969 p. 31) has shown that For the Linear Law, AmA(t)/Ak = --3/(a+B),
where k is the number of the tran.jition on the mar.ginal time-independent
state-space points. This is exactly true and shows that the marginal mean
decreases linearly on equally spaced marginal points that lie exactly on the T,
Linear Law solution in state-space. However, at this point he makes the
grossly incorrect inference that (for large numbers) the expression above may
he approximated by dm A(t)/dt = -6/(a+3) which is, of course, not true since
it implies jumping from time-independent state-space to the time trace which
is totally tjnjustified and, of course, does not give the correct result.

4. •iscellaneous Analyses

(1) Gye and Lewis (1974 pp. 6-7) give a curious twist to all this bv

starting with the usual spurious notion that onliation (20) applies to the
untransformed space and then applying the fundamental calc,,l,.s iientitv,
dp/dt = ap/dt + (Op/ax)(dx/dt) + (p/ay)(dy/dt) to arrive at the conclusion that
the Square Law Lanchester equations are really the modal trace rather than the
expected value trace in the untransformed space. It has been shown earlier that
it is not the expected value trace and this certainty does not establish it 1s
the modal trace as equation (20) only applies to the transformed space in the
limit and no meaning can he attached Lo the expressions dx/dt and dv/dt in the
untransformed space. Tn the transformed spaco it has been shown that all
probability is located on the Lanchester trace and, therefore, alt moments,
etc. are located there and to say that the mode is located there adds nothing.

(2) Farrell (1976, pp. 4-t3) has made an attempt at hounding the solutions
to the mean value functions for the SL Square Law. In the first part of his
paper he erroneously states that the L eqtattons are lower bounds on the SL neanl
value functions (mA(t) and mtb(t)) for all ao,b(1, t < tf, a,O. This is patently
not true from the discussion in Section I' and from numerous counter examples.
He then extends this to the Linear Law by some :lssl|mptions which are probably
true but leave him with the same defect that vitiated his conclusions in the
Square Law. Farrell's argument is based on the fact that equations (2) for the
SL mean values would look exactly like the Lanchester equations if It were not
for the two nonnegative terms on the right hand sides involving the absorption
probabilitiesl. For any positive t, these probabilities become positive and one
might quickly conclude that the SL solutions are upper bounds to the L survivor
functions. However, because of the interaction between the equations of each
pair this conclusion is not true; and in fact, there are many counter exampleq.
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In the next part he attempts to develop upper bounds on these same

functions. Again there is a flaw which vitiates the results. He makes a

transformation which does not require the initial force sizes to go

to infinity at the same rate and thereby destroys the validity of the work.

This can be demonstrated as follows. The Farrell transformation is given as

X(t) = A(t)/a 0 and Y(t) = B(t)/bO.

When this transformation is applied to equation (17) with k = 1, the result is

p(x,,t) [p(xv + i/bo-t) _ p(X,V,t)]
3t. cx[pv b0 t

+ 8yb 0 [P(x + I/aoy,t) - p(K,y,t)]

a 0 [p(x,y + 1/h0, t) - P(X,v,t)]
bI/b

b 0  [p(- + t/ao,V,t) - P(Xy,t)]

a0 t/a 0

Now let a0 /b0 = a constant gay, c, and let a and ÷ (using the same
arguments about cells on the transformed state space as before) the result is

S 3p(v,t) V 1 'I(x,v,t)?pxyv)= +.(30)

Now, as long as c is held fixed this transformation will ýive Lhe same
results as before because the correspondint, transformed T, equations are

dy/dt = -Lcx, ./it -C' /c)v

with ics

K(() = Y(0) = 1,

which indeed give the correct XL, YL coordinates for the ;olhitton to entiation (3o)
which is again p(x,y,t) = 6 (x - x ) 6(v - v1 ). However, in all his cnnclitisons,
Farrell lets one side have i flxeh initial rondition and let,. the other sides'irc
+ o. This gives either c 0 or c and the wholeI :tnal v i-, coIl Ips#-.

In fact, if we let a( + then c and the transition probahil ities

downward will tend to one and leftward to zero and in the limit all prohahblitv
mass will he concentrated at p(o,O,t), For all t for both spaces.

The basic point is that in any transformation of this type, if the initial
numbers on one side go to infinity both must do so and furthermore both must
do so at the same rate.

IV. FALIACIES IN 11E APPROXIMATION OF GQNERAL RENIWAL PROCESSES BY
SL PROCESSES

In all that has been said up to this point It has been assumed in thp SL model
that all interfiring times XA, X8 are negative exponentiallv distributed (ned)
rvs. This, of course, greatly simplifies matter.% as the ned rv has "no memory".
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Two attempts have been made to justify using the ned SL model as a good
approximation to the general renewal model (i.e. with general ifts, XA, XY), under
certain circumstances. These two arguments are now examined in some detail.

A. The Individual Firer Argument

First, there is the individual firer argument which is widely used in this
country and is based (see Bonder and Farrell (1970), pp. 84-86) on 9lackwell's
Theorem in renewal theory. This argument goes as Follows:

(1) Observe each independent firer on one side, all with identical
independent ifts which are general rvs, X with mean C and with kill
probability p. Embedded in each of these processes is a killing nrocess with
mean ý/p, which is also Uid and therefore renewal theory is applicable.
Set ,/p = U, for simplicity, and call the embedded stochastic process Z(t).

"(2) Each firer has a sequence of kills which are co..nted and which is a rv
in time, N(t), the counting distribution of Z(t).

(3) The uncountahly infinite ensemble of all realizations of 14(t) has a mean
value function of time, n(t), whose slope - I/u as t + -.

(4) (3) implies that Z(t) + ned with mean j, which is not true (as shall he
shown).

(5) (4) implies that a guDerposition of all firers on one side tends to have
ned interkilling times. If (4) is not true, this is, of course, not trite.

Figure 9 below shows a few of the ,inco-intahl ' infinite set oF po'ssihilo
realizations of N(t). Of course, at :very time t,_the moan is the average
over the entire ensemble and is denoted Iý{N(t)1 = n(t).

In Figure 10 we _raphically -how some definition.s From ordinary (non-
terminating) renewal theory and helow are some Lhoroms from ordlinarv renewal
theory (see reference [81):

(I) Lim n(t)/t = 1/u (Elementarv Renewal Theorom), this means the time

average (slope of the chord) of the mean valhip finot [on tnIds to I1/1.

(2) Lim N(t)/t = 1/u with probability one, this means that the time average
t÷=W

(chord) of every evolution tends to I/hi (not ;hown in Fi.ýro 10, see Figure 9).

(3) Lim dn(t)/dt = 1/I (OlackwelL's Theorem or the rKey Renewal Theorem)
t+W

means that the instantaneous rate tends to 1/u.

It is (3) above which has been invoked to iustlfv using PA/U A for 1 and

pB/lB for 6 in SL and L approximations to CR.

The fallacies in this assumption are several;
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Figure 10. The Renewal Mo.an Value FitnrLion

(i) even if 1aqable It would only apply after ai "Long" period of Lime has
elapsed, and would certainly he erroneotiq in the early ;L:.ises heFore "*teadv
qtate* applies,
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(2) n(t) is an ensemble average and therefore rates defined in properties (1)

and (3) above are ensemble rates. They are a weighted average of all rates for
certain special mutually exclusive and exhaustive subsets; weighted, as we shall
see, by the probability that the backward recurrence time is some particular
value. Thus, they cannot be used indiscriminately in probability calculations,

(3) none of these theorems apply to terminating processes (which are dealt with
here), and thus none of this implies that the embedded killing process is
tending to ned with mean .j. In fact, for the classical terminatine process it

is easy to show that lim dn/dt = 0.
t+÷*

To further illuminate point (2) above, examine what the correct
instantaneous rate is. The first thing to note is that except for ned
interevent (interkilling) times it is not sufficient to simplv specify n(t)

for the state. Th completely and unambiaot|sly define the state, n(t) and the
backward recurrence time (y) must be specified (see Figure 11). This is
because, in general, the system has Markovian "*memory" and it does "remember"
the time of the last event.

2-
n(t)

0
0

Figure It. The Ba,-kwar• R(,(irr,•,•<P Time

The rv Y with value y at t, as shown, is the nocessarv add i oI,:1I
information to completely specify the state. N function of v, r( v) i. the
ensemble rate for the subset of all re-i1 z7tirons With Y = v and t-an he ,tied

For probahbLit calculations, i.e. r(y)A = PTvent (CMI) in (tt+-)1 wher,
r(y) A f (v)/Fz(y) which Is the instantnneoip; rite given Y = v iud i- tho
weighting factor referred to in (2) above.. Noto that if Z i-; ned then
r(y) = I/• and does not depend on y.

B. The Superposition Arguent

Now examine the second argitment which i- ;AllPd the senorposition
-irgument and which is widely used in the Russian literatiire, Vent sel (IQ64).
This argument bolls downs to the Palm-Khintrhine theorem, qee reference 191,
which essentially states that if all a 0 lid interkilling processes, ZA, on say
the A side, are superposed to form a new interkilling process, Wk(t),
then Wk(t) + ned with mean I/c, as a 0 + - if

a0

(I) A t/u = c, and
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(2) each uA ,

where the UA s are the means of the lid Z AS.

In words this simply means that for either side (say the A side) the
superposed embedded killing process tends to ned as the number of simultaneous
firers tend to infinity if each firer's interkill time mean tends to
infinity. No one has investigated how large a0 must be and.how large V must
be for this to be practically useful.

It should also be noted that this theorem applies to non-terminating
processes (no theorem like this for terminating processes is known to the
authors). Indeed, obviously, as time progresses in a terminating situation
the requirement for large numbers will sooner )r later he badly violated.

It should be noted here that the only free world example of this
misapplication of the Palm-Khintchine Theorem that we have found is in Cho
(1984) where he incorrectly assumes it is applicable in a multiple marksmen
versus multiple passive targets situation.

C. Firing and Killing Rates

Next, an interesting controversy which continutes to crop tip from time to
time (see reference [41) is considered. It is the q,,estion of the appropriate
measure for the individual firing r:ate (this is equivalent to the tiestion of
the measure on the individual kill rate as it is easy to prove that iLn the CR
model, say for the A side, the Individiii,;l kill r;Le is pArk, if rA = 1/11 is
defined as the individuaL firing rate). The qleiestion which has hb en r iiqed
is, what is correct, rA = I/E[XAI or r, = V[I/XAI? 'iondor [51 orfi .inal Iv
proposed that E[I/Xk was Lhe proper ratb hit Rarfoot [21 made in intuitivte
Ar-tument that [/E[X j 's the correct one and impli iitlv (thouih not
explicitly) Bonder [61 finally agreed.

The fact is that, in generiL, as hKs beeo, shown ihov ,* neither is rorrecl
and there is no sitch general fixed rate. flowevor, if one? mus qt use ?ivi'bh inl
approximation there is no question that I/EIXA1 IL the better one. Renewail
Theory (see above) shows that for the SI. process it is .oxai't and i; Lherefore
a counter-example to the original Bonder Lhesis; Fir the CR process it is
asymptotically correct. From in intuitive viewpoint what Lhe controversy
bolls down to is the following; suppose one 'ol I'•c-ts n independent interovent
times i i = 1, 2,... n. Should one consider the siample event rate to h,,

0/ l : / /n) i/ dXA1 or shoi,,ld one consider .ach 1 to ho I
sample of the event rate leading to the sample evetiL rate (i•| I/xi)/n = l/\

Barfoot pointed out that the first is an event average and the second is :t
time average and the First is what we seek. We note, in passing, that for .1

positive rv, X, there is a theorem that F[1/XJ # I/ E[Xj (see reference [il1,
p. 166). It is time to bury this controversy.

D. Further Coments

(1) It is Important to note that there are theorems which state that, in
general, even for non-terminating processes, the int,.rpvent times for
s,,perposed renewal processes are
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(a) not identically distributed and,

(b) are not independent,

both of which are necessary for renewal theory to apply to any process. The
only exception is for ned processes.

(2) It should not be implied that if, in either the L or SL formulation, the
kill rates a, B are made functions of time that the resulting situation may
drive these formulations closer to the CR model. What happens if this is done
is that in the SL formulation each individual firer's prodess becomes a non-
homogeneous Poisson process which is indeed Markovtan bhut renewal theory does

not apply as the interkill rv depends on time (i.e. they are not identically
distributed) and successive interkill times are dependent. Thus the renewal
character of the individual processes of the model are destroyed and althouigh
it is a model of some process it is not necessarily driving SL closer to CR.

The only possible function which might have some merit in this regard is
using dnA(t)/dt for a and dn 8 (t)/dt for R, for very large ao, bo. This has
not been investigated. The notion here is that For sufficiently large , ho,
in the superposed process there may he enough backward recurrence time- of
various sizes and in appropriate proportions to imitate the ensemble mentioned
earlier at every t. Again though, the imitation will surely become poor as
time increases.

(3) A typical result from Cafarian and Ancker (1)84) is given in Figure 12
4hich shows a wide discrepancy in compatrahle L, SL, and CR model meian valli
functions. This is a two-on-one situation with Frtanm (2) iFLs on the A siie
and ned on the B (one) side.

V. THE MIPORTANCE OF PROCESS VARIANCE

Up until now, the focus has been Upon Lhe notIion that certain cobnhat
processes are adequately described bv their mean value fonctions and ii

particular, by a deterministic Lanchestr ;approximntf n to this ftnct ion.

A. The Initial SL Variance

Implicit in the idea mentioned above is the .ssumption that (at leansl for
large numbers on each side) the variance of the process is unimportant. Thi" s
assumption is largely based on Brooks (I965). 3rooks his looked at processes
such as ours in state-space and examined them it th,01 attice points only mdnd
in particular at the lattice points where qic-eessivelv I oeonL only has
occurred, 2 events only, 3 events onlv, Plo'. tp ti the point where the, iinher
)f events (k) is equal to or less than the miin (a),hb) (s(ee Figure 4.) This
ensures that not enough events (events hen to k i I Is on ,-ither side) have
occurred for an absorption to have occutrred. Thi es sentiallv means very
early in the combat. He then defines a concept called "*'tochastic
determinism" as the property of a process at the kth event, that the quaintitv,

k /a , is small for all k < min (a oh ) and where a is the standard
deviation of the losses on the A side (this is also tIe standard deviation of
the survivors).

Next he shows for the SL Linear Law (in general, evein Lhou..h he claims it
for a succession of one-on-one duels only) that k/a ( <1/2 /a1 , k ( min
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Figure 12. An F.xample of Compar hl, e ., '1., .inI " ModeI 4eann Valiep 17ifl t ions;.

(ao, bo), which is sufficenL For his d(ffinition of sLochastic determini-m.
qowever, examination of the coefftcionL of vari.ition oF the Fsts for Lhis

case yields _/a/kB or a minimum valuie of /1/min (aiohQa) /,% C1e ryv,
the term "a/B can he very 1 irge indode, inrd ono wmnid s;urlv not ie jiu,;tiFieri
in calLing this quantity small for a.1I pos hI o par t- eLr valIip';. Or, just
took IttLhe value of ok, which Is ika86/(a+B) ind which has a maximum of
(1/2) VIk . Again for large values of ,in ;-nd h , Lhi[ (-.'in att rlin i l rrrT
value since k can equtal min (ao,h,)).

For the Square Law Brook' s resi•lt I t r,, i I i.r (ht o111 consiHE- rs; the

case where a = 8).

Clark (1969, pp. 132-133) Utsing t,'u'huiliI.' Suu}gstl hv Soow (1949) has
4 ven the variance for the SL SquarP Law. The= Louhntiiuue -o,)Ivys the varivn-ce
equations again 'istnV the assi.ption that Ihe- .ihsorpf. ion prohahi I it ics .iri
zero. This is essentially the same idea as lrooks above, h11L ;4ives the mqore
Informative time trace (.good only for times near ,.ero). The equtations olearlv
indicate that although the percentage losses, For large a0 and h 0 may he
small, the absolute values may be largre. This ;upports the amnalysts .hove.

Wiltis (1992, p. 6) has arrived at exactly the same ordinary differential
equations on the moments as Clark (1969) above. His technique is tU- use the
differential-difference eqitation (17) for interior points to ohtain a partial
differential equation on the Joint moment jeneratilnf Function of the
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process. The moment generating function is then expanded in a Taylor's series
in powers of the two transform variables and coefficients of like powers on
each side of the equation are equated to generate the ordinary differential
equations. Since boundary equations are ignored this again implies absorption
probabilities are zero and is good only near time zero. For some models this
technique may be easier than Clark's and Snow's.

Weale (1972 pp. 11-12) reproduces Clark's results (apparently
unknowingly). However, he does give an approximate expression based on a
Normal approximation to'the joint pmf of A(t) and B(t) for the time (measured
from t - 0) during which Clark's expressions are good to any desired degree of
approximation. (The relevant equations are (42), (43) p. 20, (38) and (39) p.
18 and, (19) p. 8 in Weale.) The general idea is illustrated in Fig 13
below. Although Weale does this for a breakpoint analysis, thI annihilation
situation is simpler and illustrates the point. If I - exp(-c /2) is the
joint survival probability (for a0 , b0 + -) contained inside the contour c at
some particular time for some particular probability then certainly some of
the remaining probability is in the form of absorption probability on the a
and b axes. Roughly if a total absorption probability is selected that is not
so "large" as to distort the results then, one minus this probability is the
probability desired inside the contour. Then, by a trial and error procedure
the time at which the desired contour is tangent to

- - 1 (0o1 , bo)

b

0o 0

Figure 13. Survival Probability Contours

one or both of the axes is determined. In any event the time interval thus
calculated is conservative.

Perla and Lehoczky (1977 pp. 5-12) derive a diffusion model for the SL
Square Law. In this approximation the mean value is assumed to be the x1 (t),
YL(t) time-trace and the pdfs at every time, t, are continous and assumed
Normal (invoking the Central Limit Theorem). Then the procedure derives the
second moments. The variances are exactly as given by Clark (1969) above.
There is also a covariance determined which Clark could have, but, did not,
give. The Perla and Lehoczky model is only good until the absorption
probabilities are significant, and is essentially no different than Clark
(1969). Again they show that early variances may be large.

In general, the use of a continuous state-space implies a limiting
mapping (good only on a tranformed space) as explained earlier. But, for
approximations, these expressions with very large initial numbers are used in
the untransformed state-space. This is justified by the following reasoning
(see Figure 14 below).
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n n+1 n+2

Figure 14. The niffusion Approximation

The figure only shows a univariate situation huit the reasoning carries
over LO the bivariate situation. The probability mass (such as at points n,
n+1, n+2) is converted to a rectangitlar probability density around each mass
point, as shown, with the same height, since the intervals are exactly one
unit apart. The histogram thus created is approximated by a curve which
nearly goes through the mass points as shown (it only goes througih them
exactly in the limiting transformed space). The mean value function is
approximately the L equation with possibly large variance for very large
initial condition and early in the process.

The conclusion is that *'stochastic determinism" as defined by Brooks Aoes
not ensure that there are not large ahsolute variations, even in the early
stages of SL models with large initial nimhers on each side.

B. The Terminal SL Variance

It can he deduced From Weiss (I9h3) that For the Sr. Linear Law the
terminal distribution is asymptotically normal. Also Gve and Lewis (1976)
show asymptotic normality for the trminal distrihution of the ST, Snuare Law.

Gye and Lewis (1974, p. 19) havo shown that for the Siiare Law the
terminal distribution of A side survivors For 1,.r,'P injital numhers is
approximately Normal with a standard delviit ion f ahoiit .395 /a iF the 4 silo

has overwhelming superiority and aholit . 7 aV for a b. In hblo
cases C = 9 = 1.

Watson (1976) uses Martingale rheorv to arrive aL ;imilar terminal
results. This Involves a transformatLion of A(L) and R(L) to get a Martins,.ia,'
rv whose terminal properties are easily arrived at. However, the inversion to
get terminal properties for A(t) and B(t) is far from simpls and it is not
obvious that there is any computational gain.

It is clear from many examples that terminal variances for initial
conditions of any size are always substantial.
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C. The Transient SL Variance

Taylor (1972), (1-45,46) develops a second order diffusion approximation
to the SL Square Law by standard diffusion techniques. This partial
differential equation has unknown coefficients; however, the following
technique identifies the coefficients.

The procedure is the same as given previously starting with equation (28)
and expanding the p(x,v,t)s in powers of one around x and v, except that this
time one keeps second order terms. It is simple to show that one immediately
gets

ap(x,v,t) =ax p(,V,) + p(xv,t)
at DV ) x

+ (ax ap2(x'v't) +y p y, )2 y + y a 2 '

with initial condition

p(x,V,O) = (x-xO) (Y-vo).

This equation has not been solved at this time, and so adds little to our
knowledge. One is tempted to hope that its solution might be a Normal .)dF
with mean KL(t), VY(t) and variances and covariance is given by Clark (1969)
and Perla and Lehockzy (1977), however, this does iot appear to he the c.ase.
In fact, the process of a Taylor', eipnInsi)O to powers of one sOems Lt g4ive
correct results (on a transformed space) for first order (mean value) resultq
hut appears to break down for second order results. The second order term
a2 Oxav is always missing and sneems necessary. This may be due to the fact

tLhat the term in one squared is not -mall comparnd Lo one to the first power.

Farrell (1976, pp. 25, 26) gives a much impro)ved method of estimating
Square Law variances by approximat ing absorpt o[, prohbah lit ies and thus :111 oWS
the analysis to go beyond the initial ;Lages. He 'tives an example where Lhe
variances at any time, t, are suhstantLiat.

Clark (1969 pp. 125, 126) has shown by examples that Square Law variances
start at zero at time zero and tend to an aIsvmpLoto at time Infinity. In
between they are either montonically licreaisity or, tncreasinlg then
decreasing. Their values are substantial.

D. The CR Variance

Finally, we mention that the only known OR sotution for more than one-on-
one (for one-on-one, see reference [I1) is a ;tochastfc duel with two versus
one (see Gafarian and Ancker (1984)). k typical result o0Mparing GM with S1.
is given in Figure 15. Clearly variation is important, and GR viriance may
differ considerably from SL variance.
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Figure 15. Two-on-One StochastLic Duet with ErLang (2) on tie
A (Two) Side ;nd NJed on Lhe B Side

This section is concluded with the ohservaiLi.on that iL can sitretv he sai,
that variance is too important to he [gnored La any realistic interpretation
of combat models. This is i sLrOng iriurient Ffor re ectin o, the notion thaL
some deterministic approximations of the me;in valtie t the sLochast Ic process

is sufficient in combat analyses.

VI. THE ERRORS IN OTrHER MEASURES OF EFFECTIVENESS

Up to this point the nrtncipal concern has heen with the mean value trace
of the survivors as a measure o)f combat progress. However, there are three
other Tneasures of combaL outcome which are at l rast crudely predicted hv the L
equations and which are now examined, especially In regard to their
relationship to the corresponding SL measures. No attempt to compare with the
equivalent GR measures will he made here. These measures are; eKpected number
of survivors, expected time-duration of the battle and the probability of
winning. These three predictors, with the previouisly itscussed mean value
trace are the only possible direct measures that can he obtained from the L
model.
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A. The Expected number of survivors

1. The Linear Law

Weiss (1963, p. 598) has shown that the conditional SL-L mean value
difference at infinity (i.e. given a win by A) is

M (M)a+ - 1)I 0a 0 a _ b -1A x(OD) ( ao0 0 _a___ b- _

AIA P(A) 1 a a0  n+- " +0 x 7-)

where a 0 > (I/a)bO. Thus L underestimates SL as this is always positive.
The corresponding B side difference is meaningless since marginal y(-) = 0
and the P(B) for L is also zero and their ratio is indeterminate. Of course,
by symmetry the same can easily be done for wins hy B when a0 < (3/!)bO.

However, the marginal difference, which is the appropriate one to
compare, is not so clear cut. For example,

a a0 + b 0-[ L( a 0 a b 0I-a ,+ -t -

A) mA( K(-) = ao ) P(B)(a) - b)

again with a0 > (W/a)b This will he very difficult to explore except by
particular examples whch is shown in Part Two.

2. The Square and Mixed Laws

No closed form expression for the Sb, mean value fitnctions at t = Xi-t
although useful forms for the marginal distrihttLons of survivors do.

In general, L always predicts the loser with zuero ecpuctd surviv'rs ind
near parity this can he very misleadtinr. The discrepancv on the winner's side
can best he investigated by examples as seen in Part Two.

It has been clearly shown that the L predicL)r 'an he eKtremely
misleading.

B. The Expected Time-Duration of the Battle

Very little has been done theoretically on this mealsuire. However, 0n
Square Law parity and always in the Linear L.aw haLtle tf + n for L. This is
clearly a useless result as all SL battles have a finite expected time-
duration because,

a 0  b

T_(t) I p'(a,0,t) + ý p'(0,b,t)
D) a-0 b=O

where fT = a proper pdf of TD (the rv, time-duration of the combat). The rhs

is, in general, a weighted finite sum of exponentials and will therefore have
a finite mean.
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Bowen (1965) has shown that for any SL model, the mean time to the first
kill is less than the corresponding L time. While not conclusive concerning
the overall battle, this is still an irteresting and suggestive result.

Some particular examples have been worked out or obtained by
simulation. These results are given in Part Two and in general again the L
prediction can be very misleading.

C. The Probability of Winning

1. The Linear Law

Brown (1951 and 1955) laid the ground work for the following expression
which was later almost simultaneouslv pIt in finished form by Brown (1963),
Williams (1963), and Weiss (1963) (most e~plicitty). For SL,

P(A) = I a/(+6 )(bo,a 0 ), P(R) = I B/(a+6)(ao~bo)

where I is the Incomplete Beta Function Ratio. For L

P(A) = 1, P(B) = 0, a0 > (aIa)bo,

P(A) = 0, P(B) = 1, a) < (3/a)h(),

P(A) = P(B) = 0, P(D) = 1, a ( = (B/a)bO, where P(D) is a iisaLSLrous

dr3w. The last expression seems an appropriate i nterpretation since both
sides go to zero survivors at t = ®, in, either -a;n he said to have won.

From P(A) for SL we ohserve that r a / (h( o ) < I •nd tLhat F,)r

Fixed b0 and a, it is monotonically increasing a;s (/(a+6) increases or For
fixed a,B,b 0  it is also monotonicallv increasinir with ao. Figure 16 is a
typical nomparison with L.

SL

P(A)

0.5

0iL 
/L

00 1 0
/Obo

F•gure 16. Probability of Winning For L aInd SI.

-37-



Note that this general curve has not been shown going through P(A) - 0.5
at aa/ 8 bb0 = I because this will only occur for strict SL parity (i.e.
a0 - ,0' 8), otherwise it may cross either above or below depending on
the exact values of the parameters. Such curves are obtained by fixing aO, b
and either a or 8 and varying the other. It is striking that L can imply P(A)
is zero when it is > 1/2 or P(A) is I when it is less that 1/2. The P(B)
situation is, of course symmetrical.

2. The Square Law

The SL probability of winning is also given in Brown (1951, 1955 and,
1963) and Isbell and Marlow (1956) as a complicated sum. Although, in Fact,
it does have quite similar properties to the Linear Law (as shown by many
examples in Part Two) it is very difficult to observe its properties
theoretically.

Brown (1951, 1955 and 1963) has derived useful approximations For both
the SL Linear and the Square Laws which are Normal probability integrals,
derived asymptotically but which are remarkably good For small numbers. Kisi
(1966) has derived the same expression for the Square Law only by a simple
transformation of the basic differential-difference equation which captures
second order differences (i.e., differences of differences) and then replaces
differences by derivatives.

It can be said generally, that near parity the I. predictor For winning
can be extremely misleading. In Part Two this is illusLtrated with particular
examples.

VII. CONCLUSIONS

In the following '4e summarize the main points in Part One:

(1) All L-SL mean value equivalent nairs differ (possibly considerably) for
all times except at crossing points.

(2) At Least For the Square Law, the 1. tra je(-Lorios iro ,1etther a iniversol
upper or lower bound on the SL mean value trajectories.

(3) Even near Lime zero, the L and SL me;an valite trajectories may differ
considerably (they do not differ materially For the Squtare Law and the
sequence of one-on-one duels version of the Linear Law.)

(4) For the Linear Law, the Square Law, the Mixe,, Law and the Square L~aw
with continuous reinforcementq there is a Law of Large numbers on suitably
transformed spaces. However on untransformed spaces one can only say
Lim E[AAk(t)]/k xL(L) - 1, Lim E[Bk(t)]/k yL(t) = 1. This (loes not

necessarily mean that as t 1e initial force sizes tend to infinity the
differences between L and SL mean value trajectories tend to zero. They may
even tend to a constant or infinity.

(5) Blackwell's Theorem does not imply Lhat individual combatants (and thus
their superposition) with general ifts tend to have ned iFts (even after a
long Lime). This is even more strongly the case for terminating processes.
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(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general ifts will yield a process with ned tits.
This can only be approximately correct for large numbers and For very large
lit means. Again the theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate general
renewal processes.

(8) The SL process variances are generally quite significant and can be
important for large force sizes, even near time zero. In addition, GR process
variances are significantly different than SL process variances.

(9) The other L measures, (a) expected iiumber of survivors, (b) expected
time duration of the battle and (c) probability of winning are even less

reliable predictors than the mean value trace.

(10) Finally, we emphasize that the hasic 4ssllmptions of the 1L (and (P, for
that matter) models simply can not hold Foc larje numbers of combatants.
Terrain compartmentalizatlon, weapon ranges, terrain obstacl.es, weather and
many other factors (including tactical ones) causo larile qcale battles to he a
set of sequential and/or parallel smal I scale engagement;. The effect of this
point is illustrated in Figure 17, where one large battle w[th )6 on each side
is compared to t6 simultaneous battleo of h ol ench side. The 1anchester
solution is identical for both ca!e; hilt Lhe SL ;,)oltiton is quite di fere'iL

look

90
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Fi.gure 17. A Comparison of One Largre Battle with Several
Simultaneous Smaller Battles
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for the two cases with the terminal number of survivors in the simultaneous
small battles being 80.4% greater than the one large battle. Further results
(Ancker and Gafarian (*)) are contained in Section 6, Part Tw-. TT, ., the
development of small scale GR models and their integration into iarge models
is intrinsically necessary. The effect of this fractionation on overall
measures of outcomes is unknown. For a discussion of current thinking on this
matter in England and the United States see reference [3].

VIII. RECOMMENDATIONS

Both analytical (mathematical) and simulation research is needed and is

recommended on the following topics on CR models:

(1) SoLutions for moderate size a , and b,.

(2) Good approximations for moderate size a 0 and bO.

(3) Superposition of terminating renewal processes (this would probahly he
best started on non-terminating proces;ses and proceed towards terminating
processes later).

(4) The possibility of using dn(t)/dt as the insLantaneous rate For moderate
numbers )f superposed iid GR processes.

(5) Numerical technioiies to solv( the cinplic~ted ;nalvtical ,odels.

(6) In simulations, variance redliirct[0n t'echniques, oil non-cLIassica

terminating processes.

(7) Determination of error hounds on appr)xiinaLions.

(8) Integration of small (or moderate) ;izo hattie models into 1air;e models
of combat.
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AE = Attrition study, Examples for particiular values of parameLers.

I = Difference between SL mean val,,e function, and L functions.
1[ = Expected number of terminal survivors.

[II = Expected time-duration of the combat.
[V = Probability of winning.
V = Variance of the process.

VI = Miscellaneous results.

ANCKER, C..J., JR. and GAFAR[AN, A.V. (*)

New results presented for the first time in Lhl, paper.

AT Compares L and SL battles of mo(erat,' ;i'.e with several simunlataneois

L and SL battles with the same rites on the opposint, sides and whose
total Initial numbers on each sile eq,,al the lairier battle. Mean
value fumctions and standard devi ations ire shown.

AE 1,11, and VI pp. 183-192.

BONDER, S. and FARRELL, R. (1970)

"Development of Analytical Models of Battalion Task Force Activities", SRL
1957 FR 70-1 (U), Systems Research Laboratory, Department of Industrial and
Systems Engineering, Universitv of Michigan, Ann Arbor, 4T 48106, Sept 1970,
640 pp. DTIC# AD 714677.
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AT Invokes Blackwell's Theorem to justify using SL equations for GR
model (pp. 84-86). This is an inappropriate usage.

BOWEN, K.C. (1965)

"A Comparison of the Duration of a Deterministic Battle and the Mean Duration
of an 'Equivalent' Stochastic Battle", Research Working Paper L4, DOAE, MOD,
UK, June 1962, 6 pp.

kT Shows that for any general SL model the mean time to the first kill
is less than the corresponding L time.

BROOKS, F.C. (1965)

"The Stochastic Properties of Large Battle Models", OR, Vol. 13, No. 1, Jan-
Feb 1965, pp. 1-17.

AT Defines "Stochastic Determinism" and shows Lhat SL Square Law and
Linear Law comply.

BROWN, R.-. (1950)

"The Solution of a Certain Difference Equation with Applications to
Probahitlitv", Ph.D. Thesis in Pure Science, Columbia UIniversitv, New York, NY,
1951, 40 pp. TJMic #33251.

AT Oerives a Normal integral anpro,<imation to the prohahilitv that the A
(or B) side wins in an ML Sqiarp law hattie with larc,# initial
numbers.

BROWN, R.H. (1955)

"A Stochastic Analysis of Lanchester's Theory of Comhbit (11)", Technical
Memorandum, ORO T-323, Operations Research Office, 1ohhns lopkins Hniverityv,
Chevy Chase, 'fD, Dec 1955, 3Opp. DTIC# AD 8)2q44.

AT Derives a Normal integral approximation to the nrohahi itv that the \
(or B) side wins in an SL Square Law hat le with l.irge initial
numherq.

AE IV p. 29.

BROWN, R.H. (1963)

"Theory of Combat: The Prohahilitv of Winninsg", OR, Vol. II, No. 3, May-fut,,
1963. pp. 419-425.

AT Derives Normal integral approximnatlons to the prohahilitv that Lhe A
(or B) side wins in both SL Square Law and Ltnear Law battle-.

CHO, J.K. (1984)

"Combat Attrition Analysis Using Renewal Process", MS Thesfs in Operations
Research, NPGS, March 1984, 55 pp. DTIC# AD-A143139.
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AT Incorrectly applies the Palm-Khintchine Theorem to multiple marksmen
firing at multiple passive targets.

AE I p. 48.

CLARK, G.M. (1969)

"The Combat Analysis Model", Ph.D. Thesis in Industrial Engineering, OSU,
1969, 286 pp. UMic #69-15905.

kT Shows that difference terms between all possible L function and
equivalent SL mean value functions exist (pp. 7R-81). Gives explicit
expressions for the Linear (pp. 81-83) and Square Laws (p. 80) and a
special acquistion model (p. 151). Gives variances for the SL Square
Law (pp. 132-133) before absorption is significant.

AE I and II pp. 117, 118, 1H9, 121, [22, 153. V pp. 125-128, 134, 154.

CLARK, G.M. (1982)

"Low-Resolution Small Unit Model (LORSUM)', Report RF783217 FR 82-1 (U),
Research Foundation, OSU, May 1982, 502 pp.

NE I and I1 pp. 157, 158, 160-1h9.

COVEY, R.W. (1969)

"Dropouts in Combat: A Stochastic Model", MS Thes s in Operations ReseIrch,
NPGS, October 1969, 39 pp. r[)IC# AD 704482.

AT Shows Linear Law SL mean Coincides exna'tlv with 1, at transition
points in time-independent state ;pace (p. 31).

CRAIG, J.D. (L975)

"The Effect of Uncertainty on Lanchester-Tvpe Firitions of Combat", MS Trhesiq
in Operations Research, NPGS, Septemher 1975, 174 pp. I)Tl('# AD A0)17590l.

AT Integral. For the difference between the SU, mean vailte finctions -nd
the L equations for the Square Law WiLh breakpoints (pp. h5, h8) and
with annihilation (p. 68).

AE I pp. 71-81, 83, 85-92, 94, 96, 98-12h. TV pp. 44, 46-50. V pp. 2?-
33, 57-64.

DALY, F (1984)

"The Multi-threat 'Square' Law Battle", Mathematical Scientist, Vol. 9, 1984,
pp. 1-14.

AE IV p. 12.
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DATHE, H.M. (1967)

"Some Extensions of Stochastic Combat Analysis", ORG/MS-19, Operations
Research Gruppe der IABG, Munchen, West Germany, April 28, 1967, 26 pp.
NATOCON.

AE IV pp. 18-23.

ETTER, D.O. (1971)

"Deterministic Combat Attrition Models for Spatially Distributed Forces",
Paper P-577, Systems Evaluation Division, IDA, May 1971, 95 pp. IDA Log No. HO
69-10951.

XT Rigorous proof that transformed versions of both Linear Law and
Square Law SL mean value functions converge in probability to
transformed versions of L equations.

FARRELL) R.L. (1976)

"Measuring the Errors in Approximating Stochastic Combat Models with
Differential Equations", Report by Vector Research, Inc., Ann Arbor, MI 48106,
November 1976, 28 pp. (Nbstract in ORSA Bulletin, Vol. 23, Supplement 2,
November 1975, p. B-289).

AT Attempts to hound the SL Square Law. Results not correct. Gives ain
improved method of estimating SL Square Law moments (not Iss,,ming
absorption probabilities to he zero), same as Farrell and Freedman
(1975) except does not include heterogeneo,|s case.

AE iV p. 28. V p. 27.

FARRELL, R.L. and FREEDMAN, R.J. (1975)

"Investigations of the Variation of Combat Model Pre(Lictions with Terrain Line
of Sight", paper prepared for US Army Materie[ Systems Analvsis Agency,
Aberdeen Proving Grounds, Aberdeen, MD 21005 hv Vector Reseairch, inc., Ann
Arbor, MI 48106, January 1976, 116 pp. I)r[C# AD) B011157.

AT Appendix B, p. 85, gives an improvtdl method of estimating SI, Sqiure
Law moments (not assuming absorption probahilit los to be zero).

CAFARIAN, A.V. and ANCKER, C.J., JR. (1984)

"The Two-on-One Stochastic Duel", NRLQ_, Vol. 31, No. 2, June [984, p-. 309-
324.

AE I and It pp. 318-320. V pp. 321-323. (include- CR comparisons)

(Also TR-43-83, U.S. Army TRASANA, White Sands Missile Range, NM
88002, Dec 1983, 58 pp. DTIC# AD A143679. Also [SE rR 83-1, Dept of
Industrial and Systems Engineering, Univ of Southern California, Los
Angeles, CA 90089, March 1983, 58 pp.)
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AE I and II pp. 20-24, T2-11. V pp. 25-29, 112-21. (Includes GR
comparisons)

GRAINGER, P.L. (1976)

"The Use of a Stochastic Tank Engagement Model to Examine the Effects of
Moving Target Correlation and to Derive Equivalent Lanchester Equations", MS
thesis in Operational Research, Dept of Statistics and Operational Research,
Brunel University, Uxbridge, UK, June, 1976, 88 pp.

AT Analyzes behavior near t = 0 of models whose overall kill rates are
proportional to products of the number remaining on each side raised
to integral powers (App. G).

GYE, R. and LEWIS, T. (1974)

"-Some New Results Relating to Lanchester's Square Law", Research Report,
Department of Mathematical Statistics and Sub-Department of Operational
Research, University of Hull, Humberside, UK, January 1974, 25 pp.

AT Incorrectly argues that L Square Law trace is modal trace for ST
(p. 7). It is true for transformed spaces. Also gives approximate
values of Square Law SL terminal variances For special cases (pp. 12,
14-15).

AE It p. 21. i[[ p. 23,24. IV p. 21. V pp. 15,16.

GYE, R. and LEWIS, T. (1976)

"Lanchester's Equations: Mathematics and the Art of War. A Historical Survev
and Some New Results", Mathematical Scientist, Vol. I, 1976, pn. [07-119.

AT Shows that, for large initial numbers, the terminal ST square Law
distribution is asymptotically Normal (p. 114)

AE I p. 118. i[ p. t17, 118. TV pp. 114, 117. V p. 115, 117.

HARDECK, W. and HILDEN, H. (1967)

"Eine Stochastiche Erweiterung Der Lanchester-Theorie" ("A Stochastic
Extension of Lanchester Theory") Dipl.-Math. Z.O.R. Trier, 55 Trier, Treverer
Strabe 1. West Germany, 1967, 10 pp. NATCON. (On Cerman, Enklish translation
available).

AT Indirectly shows that difference terms between all possihle 1.
functions and equivalent SL mean val[,e functions exist (eqttations
(10), p. 5). Gives explicit differences for the S1. Square Law with
time-dependent kill probabilities and firing rates.

HARTLEY, O.A., HAGUES, J.N. and KETTLE-WHITE, W. (1982)

"STOCHADE: A Combat Model for Comparing Deterministic and Stochastic
Lanchester's Equations", Paper, RMCS, Apr 1982. 27 pp.
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AE IV and V p. 10 and Figs. 3-7

(Also "Deterministic and Stochastic Lanchester's Equations: A
Comparison Using Simulation Techniques", OR/WP/12, RMCS, Feb 12,
1982).

AE IV and V p. 12-A-11 and Figs. 3-7.

HELMBOLD, R.L. (1966)

"A 'Universal' Attrition Model", OR, Vol. 14, No. 4, July-Aug 1966, op. 624-
635.

(Also Paper, Combat Operations Group, Vt. Belvoir, VA, May 5, 1965,
23 pp.).

AT Non-rigorous development of 1, equivalents to various models of volley
firing at discrete time intervals (pp. 632-635).

ISBELL, J.R. and MARLOW, W.H. (1956)

"Methods of Mathematical Tactics", Logi:stics Papers, Issue No. 14, Logistics
Research Project, George Washington Univ, Washington, DC, Sept 1956, 195 pp.

AT Rederives the result of Brown (1955) given above (pn. 1-25 through I-
42).

JAMES, B.A.P. (1981)

"A Random Walk Through Lanchester Sq(Ii:re", Work ini Piper 37/7 (2/11), (x)Af,
MOO, UK, June 1981. 55 pp.

AE [ pp. 21-23,31,32,39,40,42,44,'46,52. I[ pp. 21,22,23,28,2(,
31,32,35,37,39,40,42,44,46,52,55. [TI pp. 24,25,33,34,37,39,
40,42,44,46,53,54. IV pp. 33,34,37,39,40,42,44,46,53,54.
V pp. 24,25,27,28,29,33,34,35,43,53,S4,55.

KARR, A.F. (1975a)

"On Simulations of the Stochastic, Homugeneot•s, L.ancheSLer •qluare-Law
Process", Paper P-Il12, IDA, Sept 1975. 27 pp. IDA LOLg# H175-17242. ')'TIc Ar)
AO 5658.

AE I pp. 6-9, 13. IV pp. 17,18,21,22. V pp. 144,25.

KARR, A.F. (1975b)

"On Simulations of the Stochastic, Homogeneous, Lanchester Linear-Law
Attrition Process", Paper P-1113, IDA, Sept 1975, 28 pp. IDA Log# HQ7 5 -1 7 24 3.

AE I pp. 6-8,10. 11 p. 10. IV pp. 20-23. V pp. 25,26. VI pp. 12-
14,25,26.
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KARR, A.F. (1976)

"Deterministic Approximations of Some Stochastic Models of Competing
Populations", Technical Report No. 239, Dept of Mathematical Sciences, Johns
Hopkins Univ, Baltimore, MD, March 1976, 24 pp.

AT Rigorous proof that transformed versions of the Square Law, Square
Law with reinforcements, Linear Law and Mixed Law SL mean value
functions converge in probability to transformed versions of the L
equations.

AE IV p. 22.

KIS, T. (1965)

"The Lanchester Theory of Combat", Defense Academy Research Faculty OR Course,
Japan, 1965, 61 pp. (In Japanese, English translation available).

AE It p. 52. TV pp. 52,54. V p. 52.

KISI T. (1966)

Private communication to C.J. Ancker, Jr., Oct. 11, 1966, 2 pp.

AT Derives Normal integral approximation to the SL Square Law

probability of winning.

KOOPMAN, 9.O. (1970)

"A Study of the Logical Basis of ComhitL Simulation", OR Vol. 18, No. 4, Julv-
Aug 1970, pp. 855-882.

AT Shows that SL Square Law mean val]te f,,nctions t-nd to L solutions Fir
large initial numbers if absorption prohahilities qre- fnortd or
discrete variables are non-riqgorouslV trL;t;idi as rontinnuoru (pp. 967-
871). A model with detection is ;imilarlv troa-ited (pp. 871-879).

LEE, C.Q ([979)

A Probabilistic Approach to the Prediction of Manv-on-Mnnv Combat 0Attome; The
Marriage of the Classical Rutin Problem and thf- Lanchester's Second Law",
Report 3510-79-204, Northrop Corporation, 14awthorne, CA 90250, Julv 27, 1979,
13 pp.

AE IV pp. 10-13.

LEE, W.Y. and WANNASILPA, A. (1972)

"Comparison of a Deterministic and a Stochastic Model for the Probability of
Winning in a Two-Sided Combat Situation". MS Thesis in Operations Research,
NPGS, Sept 1972. 40 pp. DTIC# AD 756536.

AE IV pp. 19-25,27-33.
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MARSHALL, C.W. (1965)

"Probabilistic Models in the Theory of Combat", Transactions, New York Academy
of Sciences Series II, Vol. 27, 1965, pp. 477-487.

AT For the Square Law with reinforcements shows that SL tends to L if
absorption probabilities are assumed zero and boundary replacements
are ignored.

MORSE, P.M. and KIMBALL, G.E. (1956)

Methods of Operations Research, Technology Press, MIT, 1st Ed. Rev., 1956.
pp. 67-71.

AE I p. 68. II p. 70. IV pp. 68,70. V p. 70.

PERLA, P.P. and LEHOCZKY, J.P. (1977)

"A New Approach to the Analysis of Stochastic Lanchester Processes. [. Time
Evolution". Technical Report No. 135, Dept of Statistics, Carnegie-MeLlon
University. Pittsburgh, PA 15213. Sept 1977. 34 pp. DTIC# AD A045176.

AT Diffusion approximation to the early part of the SL Square Law
battle.

AE 1, V and VI pp. 27,28.

SNOW, R.N. (1948)

"Contributions to Lanchester Attrition Theory", Report RA-15078, Project RAND,
Douglas Aircraft Company, Inc., Santa Monica, CA, April 5, 1948. 33 pn.

AT Difference terms between the differential equations For the S, mean-
value functions and the L functions for :i igeneraltzed Square Law (pp.
24,25) and second moments for the Squaro 1,aw (assuming absorption
probabilities are zero) (p. 25) are derived.

SPRINGALL, A. (1968)

"Contributions to Lanchester Combat Theory", Ph.D. Thesis in Statistics,
Virginia Polytechnic institute, Blacksburt, VA, Mar 1968. 205 pp. lrMic# 68-
12,660.

AE I pp. 164-166. If pp. 49,158,159,164,l16 ,166,1h7. 1[[ pp. 94,161,
162,177. IV pp. 49,156,158,159,168,169,177,182. V pp. 49,54,158,
159,170,172,173,182.

TAYLOR, J.G. (L972)

"Applications of Differential Games to Problems of Military Conflict:
Tactical Allocation Problems-Part [I", Report ,4PS55TW72111A, NPGS, Nov 1972,
506 pp. DrrIC# AD 758 663.

-49-



AT First and second order diffusion approximations. to SL Square Law
distribution (pp. 1-42 through 1-46).

TAYLOR) J.G. (1983)

Lanchester Models of Warfare. Vol 1, Research Monograph published by the
Military Applications Section of the Operations Research Society of America,
1983, 985 pp.

AT Derives relationship between A and B sides' L functions and SL mean
value function differences for the Linear Law (equation 4.12.24, p.
505).

TOMPKINS. C. (1953)

"Steps Toward Approximations: Probabilistic Attrition Functions", INA 53-6,
Report, National Bureau of Standards, Los Angeles, CA, January 23, 1953, 15

pp.

AT Reproduces some of Snow's (1948) prior results given above.

VENTSEL, Y.S. (1964)

"Introduction to Operations Research", Soviet Radio, Moscow, translated From
Russian by the U.S. Air Force Foreign Technology Division, 1964. DTIC# AD
BO30422L.

AT Invokes the Palm-Khintchine Theorem to histAfv using STL eqiations for
a CR model (pp. 215-216). This is inappropriate.

WALLIS, P.R. (1967)

"A Model for Force Attrition", AUWE Tech Note 01l/65 (second edition) revised,
Admiralty Underwater Weapons Estahlishement, Portland, (IK, May 1967, 22 pn.

AE 1t, IV and V p. 15.
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WEALE, T.G. (1971)

"The Mathematics of Battle I. A Bivariate Probability fistributton", M7129,
DOAE, MOD, UK, Dec 1971, 38 pp.

AE V and VI pp. 14-23.
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WEALE, T.G. (1972)

"The Mathematics of Battle II. The Moments of the Distribution of Battle
States", M7130, DOAE, MOD, UK, Oct 1972, 65 pp.

AT Gives an approximate time from initiation of combat during which L
approximates mean of SL for the Square Law with any specified
accuracy (pp. 19, 20). Reproduces Clark's (1969) results on SL
Square Law variances early in the combat (p. 10).

AE V and VI pp. 49, 50.

WEALE, T.G. (1975)

"The Mathematics of Battle V. Homogeneo,,s Battles with General Attrition
Functions", M7511, DOAE, MOD, UK, Aug 1975, 83 pp.

kE IV pp. 64,65. V pp. 29-37. VI pp. 29-37,64,65.

WEALE, T.G. (1976)

"The Mathematics of Battle VT. The Distribution of the Duration of Battle",
M76126, DOAE, MOD, UK, June 1976, 84 pn.

AE I[[ pp. 15-17, 43-45. IV pp. 17, 45,69,70. V pp. 15-17, 43-
45,69,70.

WEISS, G.H. (1963)

"Comparison of a Deterministic and a Mtwhasti 'Aodel for Tnt&kraction
Between Antagonistic Species", 3iometrics, Vol. tq, Dec 11(0. pp. 595-602.

AT Give exact expressions f,,r the SI, [inear I.iw conditional tprminal
distribution and mean. The win probabilitv is -iven ,oxacttv and as
an asymptotically Normal tntegr~iI approxi-nlLion.

AE HI p. 601. IV pp. 599, 600.

WILLARD, D. (1962)

"Lanchester as a Force in History: An Analyvsi of i.and 3.ittle of the Ye;irs
1618-1905", Technical Paper RAC-TP-74, Research Arnalvsis Corporation,
Bethesda, MD, Nov 1962, 37 pp. DTTC# AD 2973751.

AT Non-rigorous irgriiment that Sqtuare Law ML, mt,;in v. lIlie flinct ionq
converge in prohahility to L functions. True only for transformed
spaces (pp. 31-33).

WILLIAMS, G.T. (1963)

"Stochastic Duels - 11", SP-iOL7/003/00, System Development Corp, Santa
Monica, CA, Sept 13, 1963, 61 pp. DTIC# 420 515.
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AT Non-rigorous argument that both Linear (pp. 31-47) and Square Law
(pp. 47-60) SL mean value functions in time-independent state-space
converge in probability to L functions. True only for transformed
spaces.

WILLIS, R.F. (1982)

"Stochastic Process Models of Combat", Working Paper OR/WP/28, RMCS, UK., Aug

1982, 27 pp.

AT Derives moments of the SL Square Law for large initial numbers from
moment generating function (p. 6). Cood only early in the combat
(ignores absorption probabilities).
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PART TWO - FIGURES AND TABLES FROM THE LITERATURE

0. INTRODUCTION

In this Part we have included almost all the calculated and estimated
(usually by simulation) results that we have found in the literature and which
are catalogued under AE in the Annotated Bibliography. Considerable effort
has been expended in redrawing all figures and retyping all tables in common
notation. These have been carefully organized and then cross referenced
between the Annotated Bibliography and the figures and tables of Part Two and
between the sections within Part Two so that working analysts may readily
locate all the details they mm' be interested in.

The only omitted material is from Craig (1975) pages 71-81, 83, 85-91,
94, 96, and 98-126, and is a number of figures where Square Law L functions
and SL mean value functions are plotted in the manner of the Figures in
Section I following. However, in the Craig plots (all for annihilation
situations) all functions have been normalized by dividing them by their
initial values. This has, in essence, divided the SL-L difference by their
common initial values. For breakpoint situations, the normalizing factors
were a 0 - x(tf) and b0 - y(tf). At First glance these appear to be
appropriate transformations. In fact, they obscure the absolute magnitude of
the difference (by greatly reducing them). Consequently, we have chosen to
omit these figures as otherwise it would require that they be recalculated and
replotted on an unnormalized basis, which did not appear to be worth the
effort.

In many figures and tahles From original souro-s, deterministic values
are not given. We have calculated them and included the result- to make
comparisons possible. Any errors are strictly our responsibility.

A. The Significance of Parity

The parameters for stochastic paritly (which we define to he ,heii P(A) =
P(B)) will not have the same values as they do for L parity (except for strict
parity). Still when one is Far From L parity the Fire-Fights will he
decisively lopsided in favor of the stronger side in both models and not he
very interesting. This fact is especially import-nt sinc• I. parity is easy Lt
calculate and SL parity is usually very difFici-lI to determine. Strict parity
is defined for the Square and Linear Laws as - = 3. , *i) hq and If = h, an(

For the Mixed Law (with N linear and I stjuare) is a = 8, *,) h , and .f ht

Non-strict L parity is as follows: for the ,in(-ir Law, x() - aI) = h - h.

for the Square Law, a(a 2- a ) = 3(b )- b ); ind For Lhe Mixed Law (-

)=3)2 f2 f'
Linear), a(a 0 - af) = 8To -_ ).

B. Draws

There are some examples In what Follows of models where draws are
possible outcomes. This matter was not discussed in Part One and deserves
some atLention here. Let us suppose that each side has a breakpoint (for
sake of generality) given by af and bf respectively. Whichever side reaches
it's casualty breakpoint first will suirrender or break and rtin. Now, let us
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further suppose that each side has a point at which it's casualties are such
that it no longer has the capability of winning but are not so large as to
have reached it's breakpoint. Consequently, it would disengage if the other
side would also retire. We shall denote these points by a new notation, aD)
and bD. The time-independent joint probability state space for stochastic
models of Figure 4 is reproduced below as Figure 18 without showing all the
lattice points which are the possible system states. What we do show are all
the subsets of states which havie common possible ouitcomes in the breakpoint
and draw situation.

b oroadrawi or a

A can win or a Awn

b;fl dra wilcocr..

The correspondi-ngy deter-ninistic. -sittat oi i- fliown inl Fi ýtr,- P), the
ph iseý-spitcp of Ftigure 2(d).

boB wins

~Phase-Space

bo
4' A wins

0 af aD a00 x

Figuire 19. The Determnin[stic Repr-iesentation -if D~raws.
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Any phase-space trace lying be.tween the curves shown will surely end in a
draw; a trace below both will, result in an A win and one above both will be a
B win.

C. Special Models

There is no dicusssion in Part One of two models which are in the
Annotated Bibliography and whose examples are In this part.

1. The Weale Special Model

This model differs from the others in that attrition is of the
form a = a(c + c b) and B = h(c 3 + c, a), where c, c., c 3 , and c, are
constant attrition coefficients. This model ,utains-as special CAses the
Linear, Square and Mixed Laws.

2. The Clark LORSUM Model

This model is considerablv more complicated than :iny of the others.
Briefly, it involves the following complications:

(1) Several different uroups on eaich side with individnal ronp
characteristics.

(2) Different kilt rates by eich rroup u:ilnot -vo rv opposii• I rotinp.

ý3) N rate it which each ,,roip deto,,-t-' ,t ch ppos in, i rou p.

(4) A time del.iv From detection ti, It',i•i Li On for Il in each iLe. T his is
maLled a shift ,oefficient.

(5) Acquiiiition a itwororrelation hetw,,, ,mit 4 i!itoro- I n.l ;ich Ir-) o.

These fictors ire displayrvd in Tihte r-7 fir lmirtin",li r .x.implos. Tho ot. LIi 1
i)f this modeI are coosidierahli more ivi vljed O il i- ;lis'n-aI ihovo , hot we
sha ll not ,l aborate further here.

1. THE DIFFERENCE BTWEENM SL MEAM4 VAUWF IINCTIONS AND L FUNM-IONS

All f •igiros and tihles in this -iect ieo lispl iv Ihe i: ,,roic- ox'opt
rabies 1-2, 1-3(a), 1-h and 1i.ire I-., 1i'b 'I.) lit v, he d1t'rmioiti,"
inf)rmation. They Irn iii hided for riomplo.,'onte'.

Additional ilif)rmattinf lon the di ffornc.'s ii ,i vo i K Vi'ir VI-3
Oihrmigh V[-12.

Parity may he observed in Fiýi.ires t-1(h), f-1 (;oliit cirves onlv),
[-5(c),(d), 1-21(b), [- 2 4 (r), 125(a),(c),(e), l-.2)h(v),(d), V[1-3 ind V[-4 while
strict parity occurs in Figuiires T-l(a),(c), 1-4, 1-9, Ind 1-12. There ire
sc;ttered parity points in various tahles h1It heinS, at is.olated time poiIL[z
they are of little interest. As observed earlier, at or near parity L is
particularly poor as an approximation to SL.
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An important point about breakpoints is illustrated in Figures 1-3, 1-4,
and 1-5. That is, for L the breakpoint curves are identical with the non-
breakpoint curves until the breakpoints are reached, at which point the L
curves are horizontal straight lines. However, the SL breakpoint curves are
higher than their non-breakpoint counterparts and depart from the L curves
much earlier in time. Contrary to some speculation, breakpoints do not
improve the L approximation to SL mean value functions; the effect of
absorption probabilities simply occurs earlier.

In Figures 1-19 through 1-26 we see .i two versus one model illustrate the
differences in L, SL, and GR mean value functions. One striking point is that
for the same value of a = ( p A / IIA ) various values of PA greatly change theA A

GR curve. In other words, combining the parameters PA and iiA can he grossly
inadequate.

The other points mentioned on pgews 15 and lh are well iLlistrqted by
these results, and they emphasize tha"L

(1) L functions are generallv inadequiate as an apr)roximation to SL 'nean
value functions, especially in the moqt interestinv cases where one ; ide does
not have a lopsided preponderance of forfe.

(2) ST, mean value functions .ire ýoeoeri[[r inad;e(ieuate is an appro<imation tL,

their GR equ|ivalents (at least for the ;mail I fir,-fi ghts ;o far o)nsilered).
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CLARK (1969) SQUARE LAW P.119

* a --.o04
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JAMES (19aj) SQUJARE LAW p.42
(I ý a =.2
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a
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Figure 1-1.
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12-JAMES (1981) SQUARE LAW p.S2

10. - =b =0

{ #=.1: 5=0.32
8 ,, • =4 . 641b =2

qC %% 4 l0=12 b,=8I

%a* -- -------------------- --
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4 - -a---
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0 2 4 10 12 14 I's

TIME

JAMES (1981) SQUARE LAW p. 5 2

ao =12, bo=8

-� a 0=0.36, f =b, =O

. ..... 0=----0.16, #=0.32, a1=4.b.,=

4,

af 2 4 4 6 10 12 14 1

0' * I ! 1
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TIME

Figure 1-3
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,0 JAMES (1981) SQUARE LAW P.23
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JAMES (1981) SQUARE LAW p.39

121
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Figure 1-6
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15

JAMES (1981) SQUARE LAW P.46

(I 0=0.1 8 =1.3S

so =15, bo =S
(A

a =0

P(A) =0.210 (a)
0I PtB) =0.781

y(t)
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STOCH MEAN 90% 6 7

TIME

JAMES (1981) SQUARE LAW p.46
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Figure 1-7.
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20- JAMES (1981) SQUARE LAW p.40

a =o.io $=0.40
18a *?-20 bo =5

a* f=bf =0 (a)
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o10 P(B) =0.175

o 14

12
MA (t)

10

0
0 2 4 6 8 10 12 14

TIME

Co

4-
0

(h)

cc 2' S(B0t

04
0 2 4 6 8 10 12 14

STOCH-MEAN 90% 95% TIME

Figure 1-8.
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KARR (1975a) SQUARE LAW p.7

a 0 :=b 200

-r 1 - A = ri 0 0.1

.m .. Of "bf --0
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Figure 1-9
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GYE AND LEWJIS (1976) p.118

SQUARE LAW

ao = 23, bo = 32

af bf - 0

= 03

L POINT L POINT
TIME mA(t), mg(t) WITH SAME X TIME 1A(t), mB(t) WITH SAME X

3.1 22, 32 22, 31.3 46.9 10, 25 10, 24.4

9.7 20, 30 20, 29.9 55.2 8, 24 8, 23.6 (a)

16.5 18, 29 18, 28.6 63.9 6, 24 6, 23.0

23.7 16, 28 16, 27.4 72.6 4, 23 4, 22.6

31.1 14, 27 14, 26.3 31.6 2, 23 2, 22.3

38.9 12, 26 12, 25.3

CLARK 11 9 6 9 ) p.122

SQUARE LAW

Af - bf - 0

4o b0 o B t MA(t) A(t) X(t) y(t) AA(t) AS(t)

6 6 .001 .004 275. 1.059 5.134 3.000 5.195 1.059 -.061

6 6 .0015 .004 ?91. 1.133 4.640 (.000 4.740 1.133 -. 100

6 6 .002 .004 312. 1.227 4.102 0.100 4.140 1.727 -. 138

6 6 .004 .004 2500. 1.929 1.929 0.000 0.000 1.929 1.929

8 8 .001 .004 275. 1.226 6.863 0.000 6.922 1.726 -. 059 (b)

8 8 .0015 .004 291. 1.314 6.213 0.000 6.320 1.314 -. 107

8 8 .002 .004 312. 1.426 5.492 0.000 5 623 1.426 -. 136

8 8 .004 .004 2500. 2.407 2.407 0.000 0.000 2.407 2.407

12 6 .001 .004 2500. 3.297 1.969 0.081 0.040 3.216 1.929

12 6 .0015 .004 493. 6.474 1.339 6.920 0.000 -. 446 1.339

12 6 .002 .004 312. 8.160 1.176 8.480 0.000 -. 320 1.176

12 6 .004 .004 137. 10.275 1.060 10.390 0.000 -. 115 1.060

Table 1-1.
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PERLA AND LEHOCZKY (1977) P.27

SQUARE LAW

af bf * 0

Cg = -- .05

t -15

ISA(t) _______ (t)

(40.b) S a IS-0o/s S 0 is-0/s

(20.20) 9.48 (.041) 9.45 .0032 9.40 (.002) 9.45 .0053

(25,25) 11.85 (.069) 11.81 .0034 11.87 (.061) 11.81 .0051

i30,30) 14.21 (.041) 14.17 .0028 14.16 (.011) 14.17 .0007 (a)

,0,40) 18.98 (.190) 18.89 .0047 18.93 (.069) 18.89 .0021

(50,50} 23.64 (.118) 23.62 .0008 23.58 (.251) 23.62 .0017

3 - Simulatzon, 6000 replications. .Vumbers in parentheses ate standard de-
vlaiaozfs of' ePe S estimwates.

0 - Per'a ,ehoczky "Z977) jliffusion dpproxidtiol.

i F.t A ANO LH0CKZY ( 1977' -.q

SQUARE LAW

af 0 bf - 0

.075, 8 - .030

t - 10

fmA(t) qol(t) ____

(lo.b 0 ) S 0 iS-OilS S 0 IS-OIlS

(50,20) 40.18 (.003) 40.16 .0005 6.78 (.056) 6.72 .0088

(75,30) 60.32 '.029) 60.24 .0013 10.08 (.026) 10.09 .0010
(h)

(100,40) 80.34 (.066) 80.32 .0002 13.45 (.155) 13.45 .0000

(125.50) 100.32 (.030) 100.41 .0009 16.86 (.089) 16.81 .0030

(250.100) t200.96 (.149) 200.81 .0007 33.70 (.008) 33.62 .0024

S S Simulatzon. 6000 replicaCions. Numbers In parentheses are scandar. de-
vzations of Cho S estimates.

0 - Perla 5 ,ehoczkIy f977) diffusion approximation.

Table 1-2.
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KARR (1975a) pp.6,13

SQUARE LAW

af a bf . 0

a0  b, rA r. PA PB t NO) yo(t)

200 200 0.1 0.1 0.5 0.5 0.625 194.40 193.78
1.25 187.28 187.56
2.5 176.34 176.80
5.0 155.86 155.68

200 200 0.5 0.5 0.5 0.5 0.5 176.00 176.12 (a)
1.0 155.62 156.44
2.0 122.10 121.16
4.0 73.04 73.54

150 100 0.1 0.225 0.5 0.5 1.25 136.38 90.98
2.5 122.54 82.88
5.0 103.80 63.46

200 200 0.4 0.5 0.5 0.5 1.25 145.60 155.98
2.5 101.76 127.22
5.0 34.84 94.02

KARR (1975a) pp.9.13

SQUARE LAW

ao - 150. bo - 100

af - bf - 0

PA - PG - 0.5

rA a .1, r- .225

,MAt ,-;'- Xao ,OB)(t); (Y~t))
A bo bo

1.25 136.38 0.909 (.952) 90.98 0.910 (.952)

2.50 122.54 0.817 (.837) 82.88 0.829 (.837) (b)

5.00 103.80 0.692 (.692) 68.46 0.685 (.692)

Slmulaeion results.

Table 1-3
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CLARK (1969) p.153

SQUARE LAW (WITH STOCHASTIC ACQUISITION)

af = bf = 0

o bo ] t MA(t) mB(t) x(t) y(t) AA(t) AB(t)

6 .001 .004 5000. .030 4.672 0.000 4.729 .030 -. 057

5 .0015 .004 5000. .128 3.987 0.000 4.048 .128 -. 061

5 6 .002 .004 5000. .312 3.338 0.000 3.332 .312 .006

6 6 .004 .004 5000. 1.489 1.489 .316 .316 -1.173 1.173

S9 Irl .004 0300. .013 5.304 0.000 6.383 .013 -. 079

£9 .00.5 .004 5000. .085 5.390 0.000 5.504 .085 -.114

M .002 .004 5000. .654 4,486 0.000 4.568 .264 -.082

3 3 .004 .104 5000. 1.308 :.?08 .323 .323 1.485 1.485

2 5 .001 .004 5000. 961 2.700 .003 2.57! .958 129

:2 6 .0015 .004 5000. 2.528 1.504 .408 .608 2.120 .896

'2 5 .002 .004 5000. 4.154 .71' 3.364 .009 .790 .785

6 .004 .004 5000. 8.027 .061 8.26P 0.000 -. 241 .061

4:7',JsLti.n ProbabLiLLes - (p = q = .85).

Table 1-4.
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CLARK (1969) LINEAR LAW P.117

l04

o :.001
* :.004'5

bbo aSf
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CLARK (1969) LINEAR LAW p.118
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Figure 1-1.
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KARR (1975b) LINEAR LAW p.10
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KARR (1975b) LINEAR LAW P.7

=b -0:0,:

:0 * -, 0.6

St , (a)

E-

time

KARR (1975b) LINEAR LAW p.8
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Figure 1-12.
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MORSE AND KIM(ALL (1956) 0.68

LINEAR LAW

a. 5. b, 3

if , bf - 0

• 0
k 10 1 2 3 4 5 6 7+

"n 5. 4 .5 4.0 3.5 3.06 2.72 2.48 2.367

5•.0 4.5 4.1) 3.5 3. 2.5 2.0 2.0

"3 3.3 2.5 2.3 1.5 1.06 0.72 0.48 0.367

3.- i.5 ý.0 1.5 1..3 0.s 0 0 (a)

1 nubee A k ills.

P(Bq 29128I ).2266.

,f tne 9,5 win. t..he evpected number of 9 survivors
* !.621.

P(A) - 7)9/1.g) =J 7 )

,If ý," As5 win, e• expected num " A surCVvOrS

CLARK 1 1 969) p.121

LINEAR LAW

if - bf - 0

.Q b- t II -A(t) -B(t) X(t) Y(t) 6AM~ I(to

6 6 .001 .004 900. .024 4.506 0.000 4.500 .024 .006

6 6 .OOt5 .004 1075. .107 3.790 0.100 3.750 .1(7 .040

6 6 .002 .004 1!75. .269 3.134 3.000 3.300 .269 .134 (b)
6 6 .004 .304 2500. 1.350 1.350 .lq3 .191 '..57 1.257

a 9 .001 .004 400. .020 6.005 .0.00 6.000 .(20 .005

8 3 .0015 .004 350. .107 5.040 .005 5.007 .102 .035

a 0 .002 .004 1000. .214 4.107 3.100 4.000 .214 .107

8 4 .004 .004 2500. 1.571 1.571 .099 .099 1.472 1.472

12 6 .001 .004 050. .374 3.094 0.000 3.000 .374 .094

12 6 .0015 .004 1500. I.ZZ1 t.958 0.000 1.500 1.221 .458

12 6 .002 .004 2500. 2.351 1.175 .197 .098 2.154 1.077

1 12 6 .0041 .004 7S. 6.149 .149 6.000 0.000 .149 .1491

Table 1-5.
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KARR (1975b) p.6

LINEAR LAW (SIMULATION)

ao = 50, bo = 60

rA =r 0.1, PA = 0.5

af = bf = 0

t mA(t) mB(t)

0.000 50.00 60.00
1.000 10.60 19.86
2.000 4.96 14.72
3.000 3.18 13.04
4.000 2.44 11.62

0.000 50.00 60.00
0.100 38.56 48.18
0.200 30.02 41.52
0.300 25.18 35.84
0.400 22.24 30.14
0.500 18.48 28.10

0.000 50.00 60.00
0.010 48.32 58.58
0.020 47.08 57.18
0.030 45,98 56.04
0.040 44,78 55.22
0.050 .43.58 53.02
0.060 42.54 51.72
0.070 41.20 51.74
0.080 39.98 50.20
0.090 39.20 49.42
0.100 38.76 47.54

0.000 50.00 60.00
0.001 49.84 59.80
0.002 49.76 59.68
0.003 49.64 59.62
0.004 49.40 59.44
0.005 49.34 59.36
0.006 49.18 59.16
0.007 48.82 58.88
0.008 48.80 58.74
0.009 48.84 58.76
0.010 48.72 58.58

Table 1-6
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SPRINGALL (1968) MODEL p.164

25 a a So40, b0=30, m229, n2==20a:0.10,

8=0.1, y =0.2., :0.1

20
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- - L
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5E o

0
0.0 0.1 0.2 0.3 O.. 0.3 0.6 0.7

TIME

SPRINGALL (1968) MODEL p.165

4.0t
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, , 0 ' 0 2 2

3 2,

"28 (b)

24

LL

16" •

0 .01. .02 .03 .04 .05 .06 .07 .00 .09 .10 .1 1 ,12 .13 .-14 .15

TIME

Figure 1-13.
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CLARK (1982) pp.157,158

LORSUM MODEL

This table defines the parameters for following
Figures 1-14 through 1-17 and Table 1-8.

CASE INPUT DATA

1 Initial A Group I Weapons 2
Initial A Group 2 Weapons 10
Initial B Group 1 Weapons I
Initial B Group 2 Weapons 5

Rate A Group 1 Weapons Kill Acquired B Group I Weapons .001
Rate A Group I Weapons Kill Acquired B Group 2 Weapons .002
Rate A Group 2 Weapons Kill Acquired B Group I Weapons .0002
Rate A Group 2 Weapons Kill Acquired 3 Group 2 Weapons .0004
Rate 8 Group I Weapons Kill Acquired A Group I Weapons .004
Rate B Group I Weapons Kill Acquired A Group 2 Weapons .008
Rate B Group 2 Weapons Kill Acquired A Group I Weapons .0008
Rate B Group 2 Weapons Kill Acquired A Group 2 Weapons .0016

A Shift Coefficient 10.0
B Shift Coefficient 12.0

Rate an A Detects a Firing B .03
Rate a B Detects a Firing A .15
Rate an A Detects a Silent B .015
Rate a B Detects a Silent A .025
Rate an A Loses a Detected B .01
Rate a 3 Loses a Detected A .01

A Observer Autocorrelation 0.0
B Observer Autocorrelation 0.0

2 Initial A's are Reduced by 50% in Each Group

3 Each A Kill Rate is Reduced by 25.

4 Rate A Detects a Firing B .005
Rate B Detects a Firing A .005
Rate A Detects a Silent B .004
Rate B Detects a Silent A .004

5 Observer Autocorrelations .25

6 Detection Rates Equal to Case 4, Observer Autocorrelations .5

25 65: Same as I - 6 with all qroup I's eliminated.

Table [-7
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CLARK (1982) p.160
2.00 LORSUM MODEL

CASE 1

1.20 %

r (I) %---- STOCHASTIC (a)
A1

- OI-TERMINISTIC

0.40 .

Q.QO • --- ------

0.00*

0.00 400.0 600.0 1200.0 1000.0 2000.0

TiME

CLARK (1982) p.161

LORSUM MODEL
CASE 1

.o --- STOCHASTIC

'4 DETERMINISTIC

A2 It)

4.00'

2,00-

0.00 " '
0.00 400.0 .00.0 1200.0 1600.0 2000.0

TIMe

Figure 1-14
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CLARK (1982) p.162

LORSUM MODEL

CASE I

1.00 0CCN A3 TIC

S-- - " • • S T O C H A S T I C
0.60 -- mmm OETEmMINIITIC

"1(t) (a)
S\

0.40 
-- " -- - -- -- -

0.20

0.00 400.0 600.0 1200.0 1600.0 2000.0

TIME

CLARK (1982) p.163

3.00- LORSUM MODEL
'4 CASE 1

4.00- --. . . STOCHASTIC

- O[ETENMINISTIC

- = -- -- -- -(b)

82

2.00-

1.00

0.00-

0.00 400.0 600.0 1200.0 1600.0 2000.0

TIME

Figure 1-15.
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CLARK (1982) P.164

LORSUM MODEL
1.00

CASE 2

0.80

0.60

At -- STOCHASTIC ka)

0.40 DETERMINISTIC

0.20
\

0.00
0.00 200.0 400.0 600.0 800.0 1000.0

TIME
CLARK (1982) p.165

5.00 LORSUM MODEL

CASE 2

4.00

3.00

rn A,2 ( STOCHASTIC

2.00 DETERMINISTIC

N

0.00 
N

0.00 200.0 400.0 600.0 00.0 1000.0
TIME

Figure 1-16.
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CLARK (1982) p.166
LORSUM MODEL

1.00 CASE 2

- - - - STOCHASTIC

0.06 ' OETERMINISTIC

0.go0

m lI •(a)

0.85

0.iI00 000 4.0 600.0 8000.0 1000.0

CLARK (1982) p.167
LORSUM MODEL
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4.40! -

(b)
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Figure 1-17
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CLARK (1982) pp.168-169

LORSUM MODEL

t = 500

A GROUP 1 SURVIVORS B GROUP 1 SURVIVORS

DETERMINISTIC DETERMINISTIC
CASE STOCHASTIC ERROR STOCHASTIC ERROR

1 .5046 -. 0828 .4712 .2290
2 .1126 -. 0879 .7659 .1298 (a)
3 .4311 -. 2494 .5678 .2184
4 1.0179 .0351 .7018 .0977
5 .5274 -. 2515 .4689 .2290
6 1.1318 -. 0011 .6932 .1011

A GROUP 2 SURVIVORS B GROUP 2 SURVIVORS

DETERMINISTIC DETERMINISTIC
CASE STOCHASTIC ERROR STOCHASTIC ERROR

1 7.217 .602 3.535 -2.757
2 1.202 - .654 4.525 - .850
3 6.148 .626 3.979 -2.083
4 6.292 .425 3.463 -2.366
5 7.183 .814 3.571 -2.573
6 6.824 .247 3.787 -2.092 (b)

1H 6.807 2.152 3.492 -3.490
2H 1.757 1.084 4.379 -3.309
3H 6.535 2.080 3.827 -3.792
4H 6.960 1.507 3.837 -3.402
5H 6.694 2.216 3.489 -3.487
6H 7.499 1.014 4.103 -3.283

Table T-8
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CHO (1984) SQUARE LAW (GR) p.48
a 0firers vs. b *Passive targets, uniform (a, 1) Interkill times

b0= oo., curves from theory, other curves from simulation

(40 replications)
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Figure 1-18
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GAFARIAN and ANCKER (1984) SQUARE LAW p.I-7

a0 =2, bo-=1 at =b f =0

E model Is erlang (2) on A side and ned on B side - GR

o
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Figure 1-23
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II. THE HXCTED NUMBER OF TERMINAL SURVIVORS

This section is closely related to Section I and in fact is exactly the
situation examined there at t+- only. It is singled out for particular
attention because significant discrepancies between terminal L and SL (or GR)
mean values should be especially important to decision-makers and other users.

Most of the figures and tables in Section I and Figures VI-3 through VI-
12 have been carried far enough in time so that terminal differences are very
closely approximated. This is true except for the following:

(1) Where there is no deteministic information given; i.e. Figure 1-8 and
Tables 1-2, 1-3(a) and 1-6.

(2) Where time is not carried far enough; L.e. Figures 1-9 and 1-12 and
Table l-3(b).

In addition to the parity cases noted in Section I we also have parity
here in Figures 11-2 and 11-3. Again we note that K(-) = y(m) = 0.

The inadequacies of L and SL models as previously noted on pages 15 and
16 and in Part Two, Section I are even more apparent here.

-91-



GYE & LEWIS (1974, 1976) SQUARE LAW p.21 (19,74)
p.1'17 (.1976)

140 -

8

120" a +-b 0 =400 Upper 5%
8 Value of b

100

s 80 va-lu of b /

t60- -

Lower 5%0' value of b

S40-
a • LANCHESTER'S * ,-"

DETERMINISTIC C
"o VALUE OFb b

20-

.00

-30 -20 -10 0 4-10 +20 +30 (bo0 -oa

(215.1t51 (210.1901 (205.1951 (200.2001 (105.205) (100.210$ (185,215) ( a 0 a bo0

Figure II-I
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JAMES (1981) SQUARE LAW p.2 8
STRICT L PARITY so =10

bo :10

a= 8=0.2

0.20- Of -bf =0
(MEAN IS 6.7)

-- .- l at =bt =3
;L...J(MEAN 18 6.7)

.0.. • X(--)=Y.e) ) =at.=b,

S0.10'

10 9 8 7 e 9 4 3 2 1
a,b

CONODlIONAL DISTRIBUTION (GIVEN A WIN BY A or 8) at t "D

a o 1 0

JAMES (1981) SQUARE LAW P.29 bo=10

STRICT L PARITY Of =b1 =7
a = 3= 0.05

MEAN 9. 0

S0.3 Y(a bf

"(b)
a

10

a.b

CONITIONAL OISTNIBUTION (GIVEN A WIN IV A or 8) at I =D

Figure 11-2
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3 .m Is.16I 6..ON 3.0 6.3.3 9 40. 4.0 3..
F1.04 6. LO16 1.X L.O Ls".4M 6 0406 1.* 7.63I

a cis .10.36 6.10 06 .10 34 .63 4.11 0 O.54 t.L1 0.631
MS.161 Lm 8 LI 0a0.40 4.63 6.3 .34 00.132 L.3 2.631

S 0 00.3LIS 0.0 00.0 *A 91 0.0 Los 3.22 0 13"44 LYN3t
Los.06." 3.11 *A 0.1 :.43 L"6 L"4 S0AN 6.3 846

6.61 6 .10 2.14 6. 0. .10 3.14 0.0 1
n A1 e Lo 84."a a 0.1 V1.4 31.6 M4.4 I .0 LO.W *14 I (a)

qS1200o.#0LIS Mae 460416 6.14 0.00 1.34 61 Cu LIS 6.01I
IS126.4, a.: mnf 60.4a LL 16.11 si. t . *4 00.11 S.1 3.00 1

ISSo0 000.O L 6.4 941 L0.161 4.6- S.411 0L 1.31 L6O1 I.0 00
33 1.1& 1634 n.1 6.21 6.31 00.S" .1S L2.06
1 1 Con1&a " I.6 34046 MY4 6.3 . 92 6.3 0.8 .H 1.a I

is 6 0.866C16 9.a a LIM1 S."3 L6 L.0 06.3 6.4 6.60a
26 1 o -.6 ". 1. 3 6.1 9.21 0.11 3.33 6 0.M 1.4" 1.6 a

Y.b0.. 31. 104.914 IS." 311.33 30.1 a00.0C63. 0.4 .3
m a163 L .6 I eI cam 1.33. 80.8 1 4.12 0 A.D 04 64

n RI LOS1 0.3 *AM8 1 61 8461 94.31 240 6Lm 6.330 £1.1 1.

S106.2LIS 80A 6 16.1 51.1 M1.63 4.1 LIPS* *.17 0.00
1130.6.3 n33 1.4 .4 1.1 15 0.3 LU 3.O3

6300.s 66 1I4 140 L01 14 8.63 6.11 0.63 I4.630I

I S0dAO3 34." £6.0 LM 3.33 8.41031 14.14 3.46Cu 10

ts e0 0 Cm L 3.49 10.10 36.1u 39." 1.6 o6LOU 644 0.063
843.60.6 a u 6254 080 63.4 48.634014.1 3 .0

SPRI1MIL (1966) P.49

0.*10. bg,3.0 .

4.3. IN - 6.0. A'-) a

a anb 1 2 3 4 S 6 a 9 10 P(A). P(g)m~

O(. .) 001" 0.02696 0o.043316 0.0637 10.08696 0.11254 0.12404 0.13272 0.1148U 0.05663 0.71136 5.217

p~~b- 0.41M9 0O.0248 10.0364241 .02M6 0@.063M 0.03103 0.0113M DAM67 0.2006 An3 (

1251 (2965) P.52

80 - S. be - 2

al. b . 0

LAV 3 2 2 P(A) [CA(-)I A)

s~r 4j MIfS 2.46(c

I. Sumot 1.0 2.234

Table 11-2
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WEISS (1963) LINEAR LAW p.60 1

SL. z =•o =
rn T •. "~., La _:.

a
aa

L 1.4- --. J- =1.22
a

3s-

I I s 3 6 7 $s o n ILz 13 14 SI I TEl SO

do

COND(TIONAL MEANS

Figure 11-4

KISI (1965) p.52

SLINEAR LAW

a0 a 3, b0 = 2

af m bf = 0

a - 1

p(a ,o,,.)

LAW 3 1 1 P(A) E[A(--)IA]

SL 1 1 3

Linear 6 0.688 2.09

L Linear 1.0 1.0

Table 11-3
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SPRIA1.1 (1964) P.158

SPRINGALL MO•EL

a. -, 0.1. a - 3.0. a - 2.0. y - 2.0

t 0

EXECTE NAM OF 8 StINVIVOS. b EXPECrED MiSE OF A 38RVIRS,a

6,o - a P(s) O INiUISTIC STOaCISTIICaTEINIuzSrIC STFOUSTIC

08o.8%-7 2.SO O8Z42 0 0.203

to 0.97080 5.587 5.854 0 0.059

20 0.99763 11.762 12.003 0 0.005 (a)
30 0.99979 17.937 18.117 0 0.001

40 0. 9998 24.112 24.353" 0 0.000

50 1.00000 30.281 30.529 0 0.000

60 1.00000 3 36.462 36.706 0 0.000

SPRINGALL (1968) 0.159

SPRI90ALL MOOEL

% 50,a , 40. 2 So, S , 1. y , 8 o .0

EXPECTEo OmS OF SURVIVORS -

Iaf . b6 Pl(s) DTEMIIRISTIC STOC4AsIC

0 0. 14455 .2 0.704

1 0.14180 1.0 (.68h
2 0.13800 2 2.656

4 0.13321 4 4.608

6 0.12715 6 6.560

8 O.I•082 1 8.512

10 0.11420 10 10.465

20 0.016200 20-43

30 0.03071 30 10.066

SPRINGALL f19681 P.1
7

7

SPR INGAL L 82OEL

S80.b, - 60. a • 0.9•. I.8 1 A.y Z.o. a .0

If • bf S

% 4"= *7 V-A) *a(-) 1(-) A)()

20 1.31188 II .64936 0 9.64

is ?.27422 11.84?OS 0 9.85 (C

?0 7. 180"9 11.9117 0 9.9s,

]a 7.14759 22."7•67 0 20.04

40 1.278s2 12.0int6 0 ;0.07

so 7?.27n? 17.0n[97 0 20.08

60 ,.11219 2..,2t 4 0.04

Table 11-4
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III. THE EXPECTED TIME-DIJRATIOE OF THE CONMAT

The following do not give L termination times for comparison with E[TD]
but are included for completeness; Tables 111-2 and 111-3.

Certain figures in Section I contain information on time-duration and
should be consulted in connection with the material given here. They are
Figures 1-1(b), (c) (these are parity cases where tf + _), 1-2, 1-6, 1-7, and
1-8 which are all Square Law.

The following figures clearly indicate the effect of breakpoints when
compared to annihilation models: Figures 111-1(b), [ll-2(b), [1l-3(a), [11-4
and Table 111-1(b). The breakpoints lower the time-duration of the fire-fight
substantially as one would expect.

Nowhere is-the variance of TD explicitly computed except in Tables 1l[-
1(b), (c). The 5th and 95th percentiles are shown in Table [II-1(b).
However, these tables and an inspection of all the probability distribution
functions (fairly flat) and density functions (rather spread out) demonstrate
that V[TTQI is indeed substantial. This fact and the large discrepancies
between E[TTDI and tf which can be extremely large near parity (where
t +' ) lead to the conclusion that tf is an extremely poor approximation to
Lge measure, expected time-duration.

Finally, Figures 111-1 and 11t-2 not only show plots of the distribution
function of TD but also the marginal functions PiT D < t, A wins] and PiTD K t,
B wins]. We point out that these latter two are not conditionals (some of
which are shown in Tables 111-2 and [11-3(a)), hut are improper distribuition
functions with the property that as t + - these function tend to
a 0  b0

1 p(a,O,-) = P(A) and ý p(O,b,-) = P(B). This is related to the fact that
a~af b=bf

the expression at the bottom of page 36 is the time derivative of the
identity;

FTD(t) = P[T D < tI = P[TD < t, A wins] + P[TD < t, B wins]

a 0  bh

I • p(a,O,t) + • p(O,h,L)
a~af =h f

which, of course, only involves the absorption probabilities.

-99-



JAMES (1981) SQUARE LAW p.53

*0= 12

1.0- OA

0.4 ~ , 0..34~D

0.8.2 
f=

0 0 0.6 3 EA a VICTORY 0 1

TMEA

JAMES (1981) SQUARE LAW p.54

1.-0=0.15 0=0.32 TOTAL
1.0 e0=12 b0 =8

0.6- (b)

F T .- MA LEuv 56) 8VCOY 0.511 (t=co)

0EIA 0.468 (t=c CO

0.4- 
ITR

0.2-MA

0~
0 1 2 3 4 5 6 7 6

TIME

Figure 111-1.
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JAMES (1961) SQUARE LAW P.33

b0=

G=0.10TOTAL

o0.9

IN T . MI(MILU~ VICTORY

0.E40. 
59I (a)

0.2 MA

0
0 1 2 3 4 5 a 7 a 9 to 1 1 12

TIME

JAMES (1981) P.34

(1=004 8 0.50TOTAL

0Fiur =I.rIII

0 ~ ~ ~ ~ 1 MEIN -. 2.(=0



JAMES (1981) SQUARE LAW p.24

0.3- 50% a0 =10

MEAN (L-Iwv= 6) bo_=O

0.2- f /=bf=3 
a = P• -. 2

f1o%% 5o% (a)
T ME N (belo v = oD)

0 10%

090%0 .1 - a f = b f --O

95% 90%

1•,•95%

0

0 1 2 3 4 5 6 7 8 9 10 11 12

TIME

JAMES (1981) SQUARE LAW p.25

0.2- 
80 =10

50% b o -= 10
MFAN (Loquiv =7) a f-- bf =7

0.15" 
a= i=0.05

T (b)

0
0.1-

0.05-
S~95%

0 I I I ' I I "I

0 2 3 4 5 6 7 8 9 10 11 12

TIME

Figure ttt-3.
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WEALE (1976) pp. 4 3- 4 5

SQUARE LAW (WITH DRAWS)

ao = bo = 10

a f =2, bf z 3

a = 0.16, 0 = 0.08

P(A) = 0.77630301, P(B) = 0.03090876, P(D) - 0.19278822

DRAWS OCCUR IF:

a 2, b . 6 or
b =3, a<5

E[TD] = 5.35 E[TDIA] = 4.58 E[TDIB] = 6.21 E[TDID] = 8.31

T FTj fTo FTDIA fTOIA FT0 18  fToIB FT 0ID fTDID

0.00 0.00000 0.000 0.00000 0.000 0.00000 0.000 0.00000 0.000
2.00 0.03466 0.073 0.04445 0.093 0.00419 0.012 0.00010 0.000
4.00 0.33787 0.193 0.42414 0.234 0.14074 0.140 0.02210 0.035
6.00 0.67320 0.130 0.79953 0.127 0.50572 0.192 0.19136 0.134
8.00 0.86077 0.063 0.95205 0.038 0.81202 0.107 0.50103 0.157

10.00 0.94620 0.027 0.99118 0.008 0.94756 0.037 0.76484 0.102
12.00 0.98115 0.010 0.99866 0.001 0.98824 0.009 0.90952 0.047
14.00 0.99400 0.004 0.99982 0.000 0.99774 0.002 0.96995 0.017
16.00 0.99825 0.001 0.99998 0.000 0.99961 0.000 0.99104 0.006
18.00 0.99952 0.000 1.00000 0.000 0.99994 0.000 0.99754 0.002
20.00 0.99988 0.000 1.00000 0.000 0.99999 0.000 0.99936 0.000
22.00 0.99997 0.000 1.00000 0.000 1.00000 0.000 0.99984 0.000
24.00 0.99999 0.000 1.00000 0.000 1.00000 0.000 0.99996 0.000
26.00 1.00000 0.000 1.00000 0.000 1.00000 0.000 0.99999 0.000
28.00 1.00000 0.000 1.00000 0.000 1.00000 0.000 1.00000 0.000
30.00 1.00000 0.000 1.00000 0.000 1.00000 0.000 1.00000 0.000

Table 111-2.
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SPRINGALL (1968) MODEL p.161

O~a B=I. 0, : .9, 'y -2.0, 6 --2.0 f=, s f=

: .0

S~m 2 s8 o, n2:bo

EC.ro SL _ _ __L (a)

0.2

0.0 O 20 30 10 so 60

s0 or b 0

SPRINGALL (1968) MODEL p. 1 6 2

L

.o 
"SL

t0.

0.06

m 2" o' 2 :bo

O.C4. so =bo

0. to 20 30 f.0 50 60

so or bo

Figure 111-4.
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WEALE (L9761 oo.15.16.17

SPECIAL .•OEL

%0  b a 10

af b bf -3.

P(A) - .99280N. P(Q) - .00MI00U1 . P(M} - .00717316

ONR46 OCCUR IF:

a - 2. b < 6 .

ATTRITION RUCTIONS:

A Side aO.OS 0 0.OSb)
8 Sfd - b(O.025 4 O.O0Sa)

1 E[T0J 2.02 E(TOIAJ - 2.00 ECTo] " 3.43 E[TOIO" 4.44

T FTO 0To F701A fToJA FT018 fToIg FT019 fTo1o

0.00 0.O000 0.000 0.00000 0.000 0.0000 0.w00 0.00000 0.000
1.00 0.08261 0.314 0.08320 0.316 0.00235 0.015 0.00009 0.001
2.00 0.56262 0.471 0.56656 0.474 0.09754 0.210 0.01865 0.059
3.00 0.87641 0.172 0.88158 0.171 0.40279 0.353 0.16248 0.231
4.00 0.97035 0.043 0.97420 0.041 0.71639 0.250 0.43818 0.290
S.00 0.99267 0.010 0.99483 0.008 0.89422 0.114 0.69471 0.211
6.00 0.99797 0.002 0.99900 0.002 0.96638 0.041 0.85568 0.115 (,ta)
7.00 0.99936 0.001 0.99961 0.O00 0.99038 0.012 0.93695 0.054
8.00 0.99977 0.000 0.99996 0.000 0.99743 0.003 0.97350 0.023
9.00 0.99991 0.000 0.99999 0.000 0.99934 0.001 0.98904 0.010

10.00 0.99997 0.000 1.00000 0.000 0.99984 0.000 0.99549 0.004
F 11.00 0.99999 0.000 1.00000 0.000 0.99996 0.000 0.99814 0.002

12.30 0.99999 0.000 1.00000 0.000 0.99999 0.000 0.99924 0.001
.3.00 1.30000 0.000 1.00000 0.000 1.00000 0.000 0.99989 0.000
.4.00 1.000M 0.000 1.00000 0.000 1.00000 0.000 0.99987 0.000
15.00 1.30000 0.000 1.00000 0.000 1.00000 0.00O 0.99995 0.000
16.00 1.300O00 0.000 1.00000 0.000 1.0000 0.000 0.99998 0.000

SPRINGALL (1968) 0.177

SPRrINGALL 400EL

* 60. be 60. ,a 0.9. B - 1.0. yr " .0. 2.0

Af - bf * 5

10 0. 445087

15 .1-3268

20 0. 15671

30 0.10796 (b)

40 0.09529

50 0.09165

60 0.09091

Table 111-3.
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IV. THE PROBABILITY OF WINNING

We note again that, for L parity, the L prediction is that both sides are
annihilated or both sides reach their breakpoints. In either case, neither
side wins and therefore L predicts P(A) = P(B) = 0. At parity, the L
probabilities have a discontinuity and make a jump with a predicted
probability of zero at the parity point. At the corresponding SL point, the
win probabilities are P(A) = P(B) - 1/2 for strict L parity and will be some
value different from 1/2 for non-strict L parity. In the latter case, it may
even be on the wrong side of 1/2, e.g., SL P(A) may be greater than 1/2 when L

.P(A) = 0. The jump points are shown as dashed vertical lines on almost all
curves or are otherwise indicated on some curves and all tables except Figure
IV-15 and Table IV-10 where no L information is given.

Some other sections in Part Two contain figures and tables on the
probability of winning and should he consulted. These are:

(1) The Square Law; Figures 1-1(b), (c), 1-2, 1-6, 1-7, 1-8, [It-I, [11-2

(in these latter two figures FT (-) are P(A), P(B) on the A, B victory curves

respectively), V-12, V-13, V-14 and Tables 11-1, 11-2, and V-9.

(2) The Square Law with draws; Table [[1-2

(3) The Linear Law; Tables 1-5(a) and 11-3.

(4) The Springall Model; Tables [1- 4 (c), V-6 and V-Il.

(5) The Weale Special Model; Table 111-3(a) and V-1O.

Some of these contain L comparisions and some do not. Usually, the L
predictions are obvious or easily determined from the discussion in Part One.

The probability of winning figures all are shown as continuous functions
of the parameters a0, b0 (also af and bf in some cases), a, 6 (which may be
exhibited in terms ot PA' 0 PB and ii ). if an and b0 are fixed, and
if a (or 8) or some function of a and B is varied the curves are genuinelv
continuous. However, this is the case only for Figures IV-It, IV-40(b)
(showing slope discontinuities which it should not) and IV-17. All others
should have values at certain discontinuous points only. In other words, if
a 0 or b0 is the variable, the P(A) and P(B) curves should be discontinuous.
This can he somewhat misleading and care shouLd he taken hi reading the
curves. Figure IV-2 illustrates this point. a and B are fixed, aF= bf =)
and the curve parameters are a 0 + bO. if, for example, a 0 + b=5, ao can
only assume values 0,1,2,3,4, and 5 while the corresponding vaues of b- aru
5,4,3,2,1, and 0. P(1) only has non-zero values at abscissa points 0, 1/16,
4/9, 9/4, 4 and - . Interestingly, there is only one value to Lhe right of
the jump point. Also one has to be curious about the curve whose parameter is
a 0 + b0 - 0 as this implies neither side has any combatants! If the authors
used some limiting process to obtain this curve or assumed ao, b0 continuous
for the others, they do not say so.

In any event, the presented material contains a wealth of evidence that 1,

is a very poor predictor of the SL probability of winning.
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GYE & LEWIS (1974, 1976) SQUARE LAW p.21 (1974)p.117 (1976)

140 .00

120] a +bo =400 Upper 5% -

S o 0 value of b

100

eo Median

S6 0-•

"Low/ 5%

4 0

DETERMINISTIC -

I• VALUE OF b -

20

------------------z

-30 -20 -10 0 +10 +20 4-30 (b,-ao8

2215.185) (210.190) (205.195) (200.2001 (195,205) (190,2101 (185.2z5| ( a 0 b

I I I I I I I I1

0.001 0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.90 0.990

SL P (B)

L P(B)

Figure IV-I.
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LEE and WANNASILPA (1972) p.32

SQUARE LAW:

1.0~a= 8 =0.05,f =bf =0

0.g9

0.8

0.7

0.6 -

P(B) 0.5 -

0.4 "-I

a -b = 30o o
0.3 - ao -b = 5

8 0b 0 0

0.2 -

0.1

0
0 1 2 3 4 5 6 7

2
a 80

Figure IV-2
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LEE and WANNASILPA (1972) p.30

SOUARE LAW-

1.0
I . (7=0.i, 8=0.3

0.7

P (B) 0.5

0.4
Ib 20
I 0

b 10
0

0-:3

bz 2
0

0.12

0.

0 1 2 3 4 5 6 7

cla2
-b0
2

Figure rV-5.
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LEE (1979) SQUARE LAW p.12
af =bf =0

1.0,

0.9- 1, 3 1,6 2

0.8/

0.7-

L PARITY
0.6-

1/ 2 3

P (A l 0. 5 -
b0 0/b 1 .707 .577

0.4

0.3-

0.2

0.1 a 0 +bo =1 2

i II II
1.0 2.0 3.0 4.0 5.0

a/ bo

Figure IV-9
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LEE (1979) SQUARE LAW 0.1 1

a f -bf=O

1.0J

0. I.~ - *o4b0 =
1

2

0.0- e ~l1

0.7-

.A-

PIAI (.- (a)

0,4-

0.3-

0.2-

0. -l

1.0 2.0 3.0 4.0 $.a

b

LEE (1979) SQUARE LAW P.13

a, =bt=O

.. +b.o10 e*0 ,b*Z12 ao÷4ob --.

/ 01.0 -

II / 40+60 =2"

0.l-

(b )

0.1-

PfAl

0 lb I
00

vO 3.0 S.0 7.0 0.0 11, 13.0 I 0 1? 0 O 10.0 210 M.0 25.0

°/,

Figure IV-10
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DATHE (1967) SQUARE LAW p.21, Fig 5

0,6 - (a)

P(A)ME _ I

o , - - - I -

0,6i bo-SO(a

0,2' -4/ ,-•o o-MEAN

I • I ,f=bf=...5bo

0Q4 0,6 0.8 1,0 1,2 1,4 1.6
ao / be

95% CONFIDENCE INTERVAL ON 0/8

0,6
P(A) _ =4 . b 0

04 I ' , =.5 ...O .7

/.IJ/7 Of V=t<,.5bo

0,2--- 0

0
0,4 016 0,8 1.0 1,2 1,4 1.6

4 VARIES 1Y -- 0.1

Figure -V-14



0~3. 19~~.29BpqaN 1955. Q-A
2

SQUARE .AW S~UARE -AW

af . Of -0 f •bf - 0

41 1 0 * 0

P(A) P(A)

0 ... 2 3 4 S l b 0  1 2 l 4 5

40

0 I - 0.00 3.30 o J.o O 0.00 1. I - ;. J0 . 0 .0.0 0.00 ).)0

L .... ~L -... - . . . . .... .! -- . . .,r- - "I. L. 0.50 0,.17 j.3.4 0.01 3.3o 0 1 .1 •.0J 3 . 2 .3 J.24 301 (b)

1.00 0.33 ).50 0.22 0.08 0.02 2 1.30 3..3 J.73 0.48 _ .36 ) .M
(a) - --------.'-..e.--.....

1 1.00 0.46 J.73 J.O 3).26 1.1 i.)O -).49 ).1 r3 )-79 3.57 ).37

4 1.30 0.99 3.92 0.74 J.50 :30.21, 4I 1.00 1.)0 0.98 0.93 3.01 0.643

5 1.0 1.30 0.98 0.39 0.72 ).5 : .)o3 ý O v.JO 0.98 0.) 3.)33

(,chmter" pIA) tS t•o shOe. ~h ".thbd ,fe ;1 , jn,flns•+r A'.5 zerO abOVe t•e fished Unesl.

,pne bola. Cho dashod -sSed Sý geo-' h cl, l ahd .~e, d :Si. t ero
.l4Red &oi.s. elsbe"l Sot.

BROWN (1955) D.A

1965) ns54
SQ3UARE L.A

SQUARE LAW

a ,96 bf . 0

P(A) P(A)

0 1 2 3 41 2 3 4 s 6

03.3 0.30 'J).00 L3.0 0.00 1 .500 167 .042 .008 .001 .0002- 1 -'- -

I 1.O0 2.90 0.74 1 0.41 0.29 0.18 2 .333 500 _225 .081 .024 .006

L -1 - -•58 -775 .500 .260 .113 .04Z (d )

2 1.00 0.99 0.97 9.39 0.I1S 0.65 4 .992 .919 740 .500 S 285 139

5 .499 .975 .8 719; .l .500 .303

3 1.00 1.00 1.00 0.99 '0.96 0.91

_ __6 .9998 .994 .98 .361 .691 .500

4 1.00 1.00 1.30 1.00 1.)0 0.98
'I beloe IwAS... It"ea L~ awo. e

5 1i.00 1.00 1.30 1.00 1.30 1-4.0 _ ____________

,Ancheoeer P(A) 4S Seoo 41ov t4# ••lh#ed ilS.
IAfd ýA b&lI. Che 'tAsh•ed sen.

TabLe IV-1
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LEE (1979) p.10

SQUARE LAW

af b bf =0

b SL L
0/ 0 0 P(A) P(A)

1.0 1.0 7.0 .0000248 0

1.0 2.0 6.0 .0081507 0
1.0 3.0 5.0 .1125240 0
1.0 4.0 4.0 .5000000 0
1.0 5.0 3.3 .8873759 1 (a)
1.0 6.0 2.0 .9938492 1
1.0 7.0 1.0 .9999751 I

2.0 1.0 7.0 .0007054 0
2.0 2.0 6.0 .0003894 0
2.0 3.0 5.0 .0187682 0
2.0 4.0 4.0 .8083533 1
Z.0 5.0 3.0 .9812317 1
2.0 6.0 2.0 .9996105 1
2.0 7.0 1.0 .9992945 1

3.0 1.0 7.0 .0036160 0
3.0 2.0 6.0 .0000602 0
3.0 3.0 5.0 .0050362 1
3.0 4.0 4.0 .9146103 1
3.0 5.0 3.0 .9949637 1
3.0 6.0 2.0 .9999397 1
3.0 7.0 1.0 .9963839

KARR (1976) p-22

SQUARE LAW

af - bf - 0

P(A)

SL L

aim a - 50; b - 50 a - 200; b - 200 a - 500; b - 500 All Cases

.80 .77 .91 1 1

.90 .74 .79 .38 1(b)

.95 .54 .68 .71

1.05 .42 .34 .26 0

1.10 .23 .25 .11 0

1.20 .20 .08 0 0

T;tble IV-2
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GYE AND LEWIS (1976) p.114

SQUARE LAW

Af bf - 0

LEE AND WAMNASILPA (1972Z o.'5 1

SQUARE LAW

,f bf 0 _---

40 bo: 2 3 4 5

I 0.962 0.999 1.000 1.JO0

2 0.890 0.995 1.000 1.000

FORCES P(G) 0. 195 0.984 O. "9 1.000

S4 0.685 0.962 0.997 .. 000

4,0 bt ie .05. * .05 5 .1. * • .3 a - .05, .2 0.571 0.926 0.993 1.000

6 0.461 0.876 0.984 0.999
1 3 0.9583 -

. 0.360 0.013 0.970 0.997

2 6 0.9938 0.87179 0.64338 3 0.-33 0.738 0.947 0.993

3 9 0.9990 0.92326 0.84266 9 0.2')0 0.656 0.916 3.937
1) 0.3.41 1.571 0.875 30.'77

4 12 0.9998 0.95268 0.88234 -- .

11 0.099 0.486 ). d26 0.962
5 15 0.9999 0.97028 0.91067 12 ).1067 0.405 0.76d 0.941

6 i8 1.0 0.98110 0.93148 13 0.044 0.330 0.703 0.114

7 21 1.0 0.98787 0.94703 14 023 -0-64 0.b34 0.379

15 0.018 0.107 0.563 0.833
8 24 1.0 0.99219 0.95881 Lb ).OIL 0.160 0.492 0.790

9 27 1.0 0.99554 0.96804 17 0.006 0.121 0.423 0.737

10 30 1.0 0.0.98188 1 0.004 0.090 0.359 0.679

19 0.002 0.066 0.300 0.619
20 0.001 0.047 0.246 0.557

21 .001 0.033 .2(X) 495
20 60 1.02 0.000 0.023 0.160 0.434

L for P(B) 1.0 1.0 1.0

,'6 0.496

(a) M(YrE. 4hOre the heavy lines e-I or L, Pfg) -

1.0.; and helov the lines, P(H) for L - 0.

(b)

Table IV-3
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KARR 11975d) p.71

30'1ARE -AW

P = p = 0.5
a % 57ao, b = 79b0P(B) C~puted on 56 Replications

Ir 8T 
P(B)

50 ' 1 3.0 1.3 0.15

50 '-'. IM 5. o.4

50 '0IA 1.6

50 SO 1.i 3.32 0.85:) 50 1 31 .2 0.9
50 1 3 . ' .45 '4
5 n. ].6 75 0.01
53ý 5 0.4 ".9 0.05
511 -r,.S I.135 0.2
50 1 ' .A i5 0.48
50 .5 . . 1 5. O, '

50 ~
5) ' "' 1 30. 5q

S' ''. , .I •.4 '3
50 150 ' .1 75:) I 7.7 '.

50 13 1) , .1

. '1'0 '.

1001

•"'1 ',7 " • q ,.

50 10 0 .3 . n .9
S 133)• ( .1 >'"• 3 ,

'33 I50 .. 1 .'
10) 0 3.3' .r) I.s
573 150 ', ). , 3.!7 ".,

S) '30 1 3.34 'l.3 3.4
5I 150 1 ),. . 1..7
50 51) .7 1. ..5u' 150 1 '3.1' . ) '.q
50 1.50 1 '1.13 '.•? I q

50 150 3 I•. • ! ! ' •
100 1)0 1 1.0. 1 .'• :,-

100r 10q 3 I .1• 1 .1 '. •'

17)0 1.10 1 ." 1 .' n.
,I 'l O 3 3 1.3 '.2 0. 1'

1'"0 130• 1 I,4 A.' 0 ._.
100 1,30r 1 .5 t .• 0.55
100' 100 1 1 .5 1 .' 0.6
113l 131) 1 1.1 1 . 0 O 79

'l, 10 1 • I .9 0.73

For I, PfB) . .,)Ve solid Line; , I

Table IV-4
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- -C - *- - - - - - - - - - - - - - - - - - - - -

C. -- - -. - -Cc

100 
0

A

C.

-C IT z.rC

- -- - -- oz -------- - - - a--------- --

Table CC
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FARRELL (19176) 0.28

SQUARE LAW

*12. b0 7

FOR L. P(A) - 0. P(8) . I

t SINAAT!00 MaIAL PM IN MOIL
(Apoo.I~tto.) SIILA (ADPO4IWAISonI

s0 '01 .00 .01 .00
160 .17 .14 .14 (a)
Z40 .40 .18 .26 .23
260 .47 .46 .11 .29
400 .58 .56 .36 .37

FARRELL (1975) p.28 FARRELL (1976) 0.28

SQUARE LAW SQUARE LAW

%4. *10 %5 , 2. bo,

4, . 0 if - f *0

.. .03.1- .01 ... 02. a .01

FOR L. P(A) -0. P(l) - I FO FL, P(A) - 0. PM8 '1I

S.A1 P(E~t) P(A.1) ___ L 1 p(B3,) P(A.t)

t INE.ATNONNA NOOK10 "MW.* $(I..ATt0 NOMA

]0 .00 .00 .00 .00 20 .17 .07 .01 .00

60 .06 .04 .00 .00 40 .18 .31 .04 .01 (c
(b) 30 .27 .00 .00 W 5 .48 .10 .05

120 .59 .57 00 DO00ý3S i 1

IS0 .79 .76 00 .00 100 .68 T 6 .19 ~ .15

AuPPM An11- P.,,.if SAW P10.*E fif755. 47ro--On Z~l .,,d r.4..5 (1173).

Table IV-6
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WEISS (1963) LINEAR LAW p.599

bo0 --100/

I •... b o 10
P(A) -

(a)

a b b f o

z 6 ' '2 '4 '6 2- _0

so

WEISS (1963) LINEAR LAW p.600

o1 0

I o

i I V 1
1 29-.22

* I"

I ,/ I I

/,

Figr IV 1

Figue29-1
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LEE AND WANNASILPA (1972) p.25

LINEAR LAW

af = bf = 0

INITIAL P(B)
FORCES

ao bo 8 .05, a = .05 8 = .1, a = .3 a = .05, a = .2

1 3 0.8750 0.57812 0.51200

2 6 0.9375 0.55505 0.57680

3 9 0.9672 0.54480 0.61740

4 12 0.9824 0.53871 0.64816

5 15 0.9904 0.53458 0.67329

6 18 0.9947 0.53158 0.69469

7 21 0.9970 0.52917 0.71339

8 24 0.9983 0.52727 0.73003

9 27 0.9991 0.52570 0.74501

10 30 0.9995 0.52437 0.75864

20 60 1.0 0.51720 0.85079

L for P(B) 1.0 Q 0

Table IV-8
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LEE AND WANNASILPA (1972) p.25

LEE and WANNASILPA (1968) p.33 MIXED LAW

MIXEO LAW:

1.0 (A LINEAR. U SQUARE) af .- 0

a= =0o.os

0.9 JI f 1bf =0

0.8 iINITTIAL
CIFORCES P(B)

40a b, a- .0s. a .05

0.7

S1 33
2 6 0.1600

0.6
3 9 0.1348
4 i2 £0.3362
5 15 0.4536

S6 18 0.5742

0.4 7 21 0.6874

ob 0 1o 24 0.7833

0.3 - 0 9 27 0.8582
b~ 3

bo 2 10 3D 0.9123

.20 60 1.0

21L for P(B) 1.0

0 3 4

a aa T;ibie lV-9

Figure IV-21
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SPRINGALL (1968) ppo.168,169

SPRINGALL MOOEL

2 , , S. 0.
9

, 1.0, - Y - 2. 0. af bf 0

aio AM bo P(B)

5 0l. 53560
10 0.55793()

0.58710

30 0.60847
30 0,62600

50 0.64112

SPRINGALL (1968) MODEL p.156 60 0.65453

S9. -0.9. * 3.0, a Y 2.0. af f 0

' AND bo P(B)

P(A•'•.I.20, m2 .S. n . .0. S 0.48567

( o ,,0 3.97080

b':o. a:0.0, 8:1.0. y .2.0 0 0. 39763

2.0 30 0.99979
4-0 '.99998

St0 20 '0 •' 100

0

l0a 0, b, 60. i 0.9. 8 - 1.0. y 2.0. 5 2 2.0

Figure IV-22

, 'i n P(A)

3 3 ). 3251,

6. 3.1211

0.30832

43 0.30690

50 1. 30637

50 0.30624

Tablte IV-iO
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V. THE VARIANCE OF THE PROCESS

In this section standard deviations are shown directly in Figures V-I
through V-9 and Tables V-I through V-6. The remainder of the section shows
state probability density functions and probability mass functions in various
forms. The pdf's and pmf's are given here even though they do not explicitly
display variance (or standard deviation) because they visually illustrate that
dispersion is usually very large.

Other sections contain distribution information which should also be
examined when variance is considered. These other tables and figures are;

(1) The Square Law; Figure 11-1 (gives 5th and 95th percentiles), 11-2, 1I-
3, (all the preceding are terminal distributions), [111-, [11-2 (the preceding
two are distributions functions of time-duraLion, 111-3 (pdf or time-
duration), VI-3 through VI-12, and Tables 11-1, 1[-2(a),(b), (preceding two
are terminal), 111-1(a), (c) (time-duration variances), VI-3, VI-4 and V1-5
(the last three are joint distributions it vqrious times).

(2) The Square Law with draws; Table 1[[-2 (pdf and dF's of tine-duration).

(3) The Linear Law; Table [1-3 (terminal).

(4) The Weale Special ModeL; Table 111-3(a) (time-dratiton), VI-6, and V[-7
(last two are joint distributions).

Particular care must be used in interpreting the Figures on state
distributions which" are discrete as opposed to time-duirition distribittions
which are continuous. That is, they are all pro)hahilitv mass functions evern
though they are variously depicted :is h ;itoirarns or i; continous. Only Fiiuiro
V-23 is correctly portrayed. The histogramns shotild he read as their height at
mid-points of the rectangles and the contintloust, cuirves only at integers on tho
abscissa.

Also, the reader should be aware of the pecttl ir 'nanner in which Figures
V-12, V-13, and V-14 have been prepared. These ire freqiiencv diagrams (not
histograms) and are to he read as having val tes only at the right hand edge or

each rectangle and whose magnitude is the rect:ingle heigýht on the left.
However the x(t) and y(t) values (the vertical dashed lines) are located at
the middle of the corresponding rectangle. For ,x.imple, in Figure V-12(a),
K(t) = 12 is located at 11.5, x(t) = 3 at 2.5 and so Forth.

The examples shown in this section amply ;iipport the contention thit
variance is indeed very important.
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CLARK (1969) SQUARE LAW p.125

200

!~ /\.--,oo,
"•-.004 (a)

_VfA -( t = J

0 00 200 300 400 500 600 700 800

Ti.e

CLARK (1969) SQUARE LAW p.126

=12

8 :b 2100000 '0

6 Bz.004

f =b f =

f'..
8 , b (, --- 1 0f0 --- 0

4 r- o

2LAR ( 106'SQAELW .13

". 00 ,"00 SOO.0

ff..

Figure V-i
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FARRELL 1916) o.,17

SQUARE LAWd

19* f a

a .003. a - .01

A " ;- vt'$t T , • "t: o • , (

t 01 .2 13 @1 2 .1 w2 .3 .1 1 2

30 7.12 7.13 7.12 L.72 1.60 1.72 9.23 9.20 9.23 0.39 0.91 J.A91
60 4.44 4.54 4.47 2.44 2.32 2.37 8.71 8.70 8.70 1.19 1.21 1.17

90 1.81 2.47 2.38 3.8 2.2$ 2.38 8.43 .40 8.32 1.40 1.40 I (a)
120 -0.64 1.18 1.18 J.71 1.80 1.94 4.J7 9.26 OLS 1.60 1.54 '.36 1

150 -3.18 0.SS 0.60 4.39 1.30 1.50 4.55 d.18 8.15 1.32 ".64 1.Ad

3 - Seotm. (34* *Ig7 a 4.040 e.•79 (0*garL,¢o n .b@pa. .0*3e

49, * 69 - 0

siftlact- (SO .Opjcae- ,0

. 2.. b

4 I V rA4t) u 08(t); a /I i ifl

t1 - .. - - .0

:2 2.J7 ,2 2. 3 5 0.4.7 ) 14 3.82 3.34 3.36 3_.3 .4 0.83 0.82

160 2 .90 1.38 1.26 1.91 0-93 1.97 2.)4 2. .2.2 1.13 1.37
50 21.17 MR5 3.65 1.'66 2. 03.89 Z7.9 .7 ..3 1.69 1.32 [.24 (b1.)

- 540 3.55 3.52 2.15 3.57 )3.9 2.92 .2.54 2.37 2.3[ 1.42 [.37

230 -.123.48 .4 5 Z I.7s .76 3.)76 3.Z 4 Z .45 2.28 3.16 [.49 1.40

2 5u -;rr.,1 50

% , SZ 0Dj0•t • I

Ta*2.ble 7 -

of -1 Of 0

a- .053..01

t 2 31 '1 '?~I *1 * 1 It * 2 '3

RO j 7.J9 7 .40 ,9 Z.35  213 2.35 4.71 4.69 4.'1 1.60 1.59 1.60

!60 4.Z? 4.54 C4.4 3.90 3.26 J.31 3.34 3.43 3.33 2.43 2.10 Z.08

N40 1.38 3.30 1.32 6.18 3.54 3.62 2.62 2.91 Ms7 3.58 Z.32 2.32 k(

244 3.461 [04 3.01 1.15 3.59 3.72 2.45 Z.78 2.64 4.38 2.39 2.40

400 j.?.LO Z.65 2.47 16.39 3.60 3.A Z.67 Z.72 .52 .27 2.66 2.51

Table V-1
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4.4Z A (.50 ::1:,(97) 2

'f .6,. a

I .15T-T E1

Ia I vs-o, I s - 1 i1S-OIIs I

(2.33 .4 .301 4.0 .3231 ].s& (.045) 4.34 .0127
(1.20 .4 .04) 1 .2319 4.61 (.Q?1 4.11 .0210(a

(100.40) 5.06 -.24 M.IS .2.1 0 (.0961 5.63 .Am1

(50o.50) 4.27 (.031 6 .20 .0045 0.21 (.054) 4.59 OMS1

(QUAWl LAW

t -4 110 tý

65.0 s.5 M.1 2.604 .51 S .M. .48 5) 1 .-73 32

(10.0 5. .0249 5.O1 .201 1.140 ( .w9) 54S 25~(

(050.100M I.3 W.2 . 4 IS.01 8.10 1.-4) .94 02

MISac *E 1500 . = LOW.

.00 1 N . 1 4 .4

- 4 m s. Z.4 Z.7'

-M Ms .21 .04 1m. 1.948 t1.36

0 .2015 .204 100. 4.08 1.4"1

LZ 6 ON0 Mo0 1500. 1.34 3.20 L&S

82 6 201 204 1ISO. .306 0.000

Tal V-02.0418. 140 .4

0 0 00 . 066 1741074



WEM-. (1t9721) pp.49,59

SQJA LAW

ao bo 10

=0.05, B=0.025

0.0 111.00O000 1 fOl) ~'33 I000 10
1.) 9.756139 9.506146 1.194560 3.24430 1O)0
2.9 9.5240i4 9.924177 9.9797np Q.477044 1.3~
3.1 9.304396 !.593419 1,45.'616 J.700587 1.10000'
4.') 9.196930 3.193d3 >2'I 1.916626 1. 0000
5.1 9.990117 7.6430A 2 .4064?'. !1.4392
6.1 8.714579 7.702794 .3126'? *.3?339 0.9998''
7.1 8,.19897 0.271979 !.10?66b !.927925 7.99R93
8.1 .9,175909 6.724917 3 .21701 .,72431) 0,99466
9.0 13. ?? 174 -ý.9 "d' " I 1 1 .920!352 IA'3S22

11.0 13.179119 5 .5?6 7 1: 4A0?') '.tM556 0.956,73

1:1.0 7.3?221~ 4.731)r,4 ~ ' 2. s 1 91 :).14V6
13.) 7.709334 1. 14 3592 7.W4 i i " 115 I.75546
14.0) 7. E0 5 53, 3 .962Y), 6 J9 '37 ):6 ). r6PR
15.0 7.511190 3.9so?9p4) *.17!0.96469
16.0 712263%? 1.109579 8.6 020 03?4o45964

170 .3077 ?.14o!3.9 1.7152141 159941
13.0 7 . 184 313 ?.47135? 9. 77 3,1!;1 '..331sný 0 " E .91
19.0 7.226994 2.11160 10.534967 1.196?93 0.19073

P*; pr~bbhilitj ma!-.,i not jh;)r)L I cý#- eoltry.

Table V-3
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CLARK (1969) p.154

SQUARE LAW (WITH STOCHASTIC ACQUISITION)

af =bf 0

ao bo a t /VIA(t)] /V(B(t)]

6 6 .001 .004 5000. .284 1.325

6 6 .0015 .004 5000. .605 1.662

6 6 .002 .004 5000. .944 1.872

6 6 .004 .004 5000. 1.816 1.816

8 3 .001 .004 5000. .202 1.528

8 8 .0615 .004 5000. .542 1.983

3 8 .002 .004 5000. .966 2.298

8 3 .004 .004 5000. 2.242 2.242

12 6 .001 .004 5000. 2.208 1.879

12 6 .0015 .004 5000. 3.276 1.743

12 6 .002 .004 5000. 3.662 1.389

12 6 .004 .004 5000. 2.866 .400

Acquisition Probablllles - (p q .85).

Table V-4
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CLARK (1969) p.128

LINEAR LAW

af = bf = 0

ao bo t -V[A(t)T] V [BFtF]

6 6 .001 .004 1500. .241 1.346

6 6 .0015 .004 1500. .530 1.642

6 6 .002 .004 1500. .840 1.811

6 6 .004 .004 2500. 1.678 1.678

8 8 .001 .004 1500. .158 1.571

8 8 .0015 .004 1500. .441 1.954

8 8 .002 .004 1500. .808 2.192

8 8 .004 .004 2500. 1.990 1.990

12 6 .001 .004 1500. 1.283 1.723

12 6 .0015 .004 1500. 2.271 1.743

12 6 .002 .004 2500. 2.987 1.493

12 6 .004 .004 1500. 3.120 .565

Table V-5
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SPRINGALL (1968) o.1 5 8

SPRINGALL MODEL

m2 z 5. a - 0.9, s , 3.0. a - 2.0. y - 2.0

af - bf . 0

b0 = ao P(B) V[8(,)] V[A(-)]

5 0.88567 2.436 0.430

10 0.97080 5.522 0.168

* 2 9.99763 11.173 0.018 (a)

30 1.99979 16.520 0.002

10 0.99998 -1.814 0.000

50 1.00000 27.101 0.000

60 0 1.90000 32. 387 0.000

SPPIN(ALL (1968) P.159

SPRINGALL MODEL

ao 50, be :40, ,2 , 50, c 1 8 Iy 6 10

a f b f P(S)

0 0.14455 4.770

0.14180 4.538

2 0.13900 4.311

4 0.13321 1.869 (b)

6 0.12715 3.446

8 0. 12082 3.042

10 0:11420 2.659

20 0.07620 1.083

30 0.03071 O.192

Tab Io V-6

-145-



Q6

U 4 0 I

Z~ LU

V 4c if

< >

46 0

CL.

CC

.jJ L.J WJ

0

UU

L)
-
4

LA. 00' IW 0\0o o 0 : s0 0 .' z o
4

-t146-



06 CL

d.j

w
cc U rLo u

OC0

~ c

LU

C

U.U

Z 
Cc*0 :

z *
o VC

C.

LU Z

m 0

<i 0

W E
4 I0 0 s'0o o cco

v~ c

-147



aI 06

r-c

A z
CCr

SIIi

- U-0

ccc'

ui 
°

* .

clo

--z 0

4 II -. -
--

f,

LL.0 II U. LA) 
r

o© o ,"/ ..

Figure V-4

-148-

I,. 
m •• ,,mm~ mm l lm m mmlllllI llllm



fPftcm

0,

1 0o w

z w a

* 0

n IT

LI.

(3 0/ 0 l0 0

C. -

Z ui
< cc
V£

II 06 N 06 0o ý0 o 10

C.) [(i -]-A

Fiur V-5



GAFARIAN and ANCKER (1984) P.1-17

SQUARE LAW

a =2, b 0 = 1

af =bf =0

E model Is erlang (2) on A side

,- ! and ned on B side - GR

oH

SL

I ~E, Pa:.
Ln1

E, PA:. 5

S~E, Pa=.9

0

a: 5CD"

80

T IMF• 0e .4 0 V2 0 '0

Figure V-6
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JAMES (1981) SQUARE LAW p.27

0.4
� e� � =0 z(9�y(5P0

0.3

EJ,=�w3
TIMO t

p4b. t�

0.I (a)

0

* O� b

� e�os� fo �IMSJ �ECSfS) a WINS) 5772

E ECAfOP go iws) �EIOI5I fa �IP4S)= 0,0

JAMES (1981) SQUARE LAW p.43

a 3 �

04 a= �0.2

(b)
�'la.�p 0.3

�Ib�ZJ 0.2

0. I

0 � -

3 2 1 0
a. b

�O b 0 :2

0.5 -(As SUNWIVOUS a =0.1 8=0.,

�(U) SUNVIVONS *� .�.b

0.4

�i*. �I.

0.2

0.1

6 S 4 3 2 I 0

MARGINAL 061USDTION elI 0

Figure V-lO
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KARR (1975a) SIQUARE LAW p.24

.?2bt-0. so x.Gb:100a

UaA 'A

____ ____ ____ ____(a)

be

,0 0 000

CI. .. b)0

SCALE OF ORDINATES UNSPECIFIED

KARR ( 1975Sal SQUARE L.AW p.2 5

b, 00 re -..

C, .001% , : ,no1

SCALE OF ORDINATES UNSPECIFIED

Figure V-11
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HARTLEY et al (1982) SQUARE LAW Fig 3
SIMULATION (500 REPULCATIONS)

FREO. - - -- - i() z NUMBER SHOWN = V(t) b 0

P(A) =0.S
160

0. a=12 4=9 a4= "3I,40 I -•

120.

SII

I I .oI - 1 3

40. I IJ"4do'
1 I

40- ,4

20"

S 10 15 5 10 IS s 10 5s 5 1o IS 5 10 is

NUMBER OF 8 SURVIVORS

N OF REPLICATIONS WHICH HAVE NOT TERMINATEO EARLIER

HARTLEY et al (1982) SQUARE LAW Fig 4
SIMULATION (500 REPLICATIONS)

yo) = NUMBER SHOWN
FIREG, II

140

120 121 g I 13 oI 1=04.s 8=o.s

100S b, =15

-I "=•I=° (b)
Io.I .4

0P0 l 46

40, /1 1

40- t

20 -

• ~~ '2 1 T -r+ , •
St I s 15 10 io s 5 10 15 5 T 10 is S O to

NUMBER or a SURVIVORS

=NO OF REPICATIONS WHICH "AVE NOT TERMINATEO EARLIER

Figure V-12.
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HARTLEY et al (1982) SQUARE LAW Fig 5

PREI. SIMULATION (500 REPLICATIONS)

-(It)= NUMBER SHOWN

120i

S O (a)i

b1 b bJ.b b0~ l
14o rt I =s

404
120- IIl 8:2)*I •t=

4 s II I

LJ nI

120 -t-I £ *1b 1 0

100 II

40 I _1 L

23 1 2345 12345 12345 3 4 5

NUMBR OF A SURVfVORS

N.O OF REPLICATIONS WHICH HAVE NOT TERMINATED EARLIER

HARTLEY ea al (1982) SQUARE LAW Fig 6
SIMULATION (SOO REPLICATIONS)

y(1I1 NUMBER SHOWN

FRED.

180 -3 0-1

10 =0 -

140 ..7 1 7.2 7 1

120o I I=b =0

P(S)=O.B (b)

0-I
30 .I I I

_o-.I I I" • II

2 4 6 a 10 2 4 6 8 tO 2 4 t o 10 2 4 6 a 1o

NUMBER OF a SURYVIVOIS

= NMO. OF REPLICATIONS WHICH NAVE NOT TERMINATED EARLIER

Figure V-13.
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HARTLEY et al (1982) SQUARE LAW Fig 7

SIMULATION (500 REPLICATIONS) a" 8=o.s

FREQ. x(t) = NUMBER SHOWN a 0= 7 bo-=10

Of =b f -=0

140- b 8 I b 6 b -4 t b 2 t b-AO

I I II

120 1 0L 0o o 10 _o

10 "T T T'I I I I I

80- 4- + + +
II I I

II I I

0 T T
III i

20 I 4 i-+ +
I 1 _ , Iw l

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

NUMBER OF A SURVIVORS

NO. OF REPLICATIONS WHICH HAVE NOT TERMINATED EARLIER

Figure V-14.
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CRAIG (1975) SQUARE LAW p.33
PSab, 155.5)

a=.oo4, 8=.ooa
ao0 =bo --=40

af bf =0 
0

4'0aa

•, 
b

0

Figure V-17.
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WEALE (1976) pp.69, 70

SQUARE LAW

ao =bo = 10

af = 2, bf : 3

a = 0.5, 8 = 0.25

P(A) = 0.776303, P(B) = 0.030909, P(D) = 0.192788

DRAWS OCCUR IF:

a = 2, b :j 6 or
b=3, a <5

p(a,b,-) x 1,000,000

A VICTORY B VICTORY

b a P a b P

3 10 124,751 2 10 1,506
3 9 199,438 2 9 5,092
3 8 194,456 2 8 9,882
3 7 151,938 2 7 14,429
3 6 105,720

DRAW LEVEL DRAW LEVEL

b a P a b P

3 5 69,044 2 6 17,551
3 4 43,447 2 5 18,646
3 3 26,459 2 4 17,640

Table V-9
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KARR (1973b) LINEAR LAW P.23

a, "0,5 
(a)

*fl I at * I•:•)

.,On 
(b)

SCALEiw OF CEOSMAE UNtSPeCsjp•goKARR (1975b) LINEAR LAW P.26

SS---• l~ ) - .. -- .

A~ 0

b , I

'Do I D

-- slot j (d )

DID.

03 U 'a ~
U0NSOum. WlrEl4iOllm (.• .,i.I

ICAL! Of OONWSATrS UVCIPlIy

Figure V-22.
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WEALE (1975) pp. 64,65

SPECIAL MODEL

ao = bo = 10

af = 2, bf = 3

P(A) = .992809

P(B) = .000018

P(D) = .007173

DRAWS OCCUR IF:

a=2, b<6
or

b=39 a<5

ATTRITION COEFFICIENTS:

A SIDE = a(O.05 + O.OSb)

B SIDE = b(O.025 + .005a)

p(a,b,-) x 1,000,000

A VICTORY B VICTORY

b a P a b P

3 10 425,276 2 10 ,)
3 9 336,501 2 9 1
3 8 156,656 2 3'
3 7 56,612 2 i i2
3 6 17,764

DRAW LEVEL DRAW LEVEL

b a P a b P

3 5 5,156 2 6 27
3 4 1,446 2 5 52
3 3 406 2 4 87

Table V-10
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SPR)INALL (1968) P.170
SPR INGALL MODEL

• 10. bo 10. * - 5, a - 0.9. s 1. y, 2. 46 2

a bf, - 0

b p(o.b.-)

1 0.09486

2 13.09809

) 10.09547

4 J.08639

5 -1.01147

5 1.115279

0.03360 (a)

3 *).0 1737

J.00653

11 1.00135

SPRINMALL (1968) o.1j.'

SP IN"GALL 4DEL

4- 15. bo 20. Z 5. n S 0.90. 8 " 1.00- y " 2.00. 8 2.00

*b~ 0

8)G * 0.803 P(A) 0.144 1

lb (o.b. ao.-

1 0.04072 .
0.04d55 21

3 0.135657 I . i_,

4 0.064i4 I , )1. r

6 'J. 07602 , .

? '3.078?2

3 3.078s0 1 ,.;''? (b)
9 j.17504 I I.Ij1: z

LO 0.06838 iU;
1I O.05901 L1 ,0.,000,1 i12 0.04783 12 ,.,1AW

13 0.03602 13 J.* OM3(

14 0.02487 14 .)W00OW
15 0.01S4S 15 0.00000
16 0.00842

1? 0.00388

18 0.00142
19 0.00037

zu 0.Oo0S

Table V-l1
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SPRINGALL (1968) MODEL p. 172

s. e :20, bo:20, m 2 :10, 8.3, a=o.9, Y:2.0, 6=2.0

0.14

0.12 - •

-0 .10

,,a aO. aI
,C 0.068 a a a

o~o, (a)

0.02a

0.00 , a a a a (a)

2 4 0a 1 0 1 2 1 4 as as ao

0.35- SPRINGALL (1968) MODEL p. 173

0.30

ao:S, b~o=S' m 223. 3. 0, C =0.,

l :2. 0. 1) z2.0
'0.25-

@ • (b)

0.15-

0.10-

0.02 5
0.00 ' I a a a

0 1 2 3 4

b b

Figure V-23.
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p

V1. MISCELLANEOUS RESULTS

Two kinds of results are presented in this section. They are: (1)
examples of correlation between A and B survivors, and (2) some new results
on combining small fire-fights to describe large battles.

In Figures VI-1 and VI-2 and Tables VI-I through VI-7, the figures
provide visual evidence of correlation (or equivalently covariance) and the
tables give actual computed values. The significance of this is that
covariance (correlation) is the term whose existence (and magnitude) causes
the Linear Law and any model in which it is a component (e.g. the Weale
Special Model and the Springall Model) to have differing L and SL mean value
functions. Other consequences of correlation have not been explored.

In the remaining part, (figures VI-3 through VI-12), two situations are
examined. Both include comparisions of L with SL fire-fights in which a large
number of combatants either engage in a standard Square Law battle or the same
total initial numbers engage in several identical, simultaneous and
independent Square Law fire-fights. The two situations are: (1) 48 on each
side for the large battle and 8 smaller battles with 6 on each side and; (2)
96 on each side for the large battle and 16 smaller fire-fights with 6 on each
side. The principal results are that the L model has identical outcomes no
matter how the battle is sub-divided, but the large SL battles differ
considerably from the several smaller battles. This is true both for the mean
value functions and the standard deviations. This substantiates the position
that the compartmentalized nature of real combat cannot be safely ignored.
This is some very early work on the problem. Much more needs to be done
before any clear picture of the seriousness of this situation will emerge.
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SQUARE LAW

af bf 0

S- 8• .05

t * 15

CORRELATION [A(t) 8(t)]

(4%.bo) S 0 I S-Oi/S

22.20 -. 594 :.105' -. 686 .0115

"5.'5ý -. 584 (.)15' -. 696 .0029 (a)

3v.30) -. 683 .301) -.686 .0044

4J,0) { -. 589 (.006) -. 686 .0044

(50.50) -. 687 (.009) -. 686 .0015

S ~ 6000 repLLaeCoetS, YU.beVS in~ parenClqegeS are

Stdjnd~r deV&.eeZOos Of C-1 5 -e.t~ate5.

Peri:1 •eehoczky (1977) jiffusion approximation.

SQUARE ýAW

af • b = 0

175. 8 330

t • 10

CORRELATION (A(t) B(t)]

Aa0.bo) 50 ;S-Ol/S

50.20) -. 512 f.)11) -. 526 .0273

",530; -. 534 .308) -. 526 .0150

r'0,44ý7 c41 .023) -. 526 .J384 (b)

125.50) -. 518 (.038) -. 526 J.154

(2500 - .527 ý.006) -. 526 .0019

S * Sifulation, 4000 replications. Numbers in parentheses are
seandard dovLae ons of the 5 estimates.

D " Perla A Lehoczky (1977) diffusion approximation.

Table VT-i.

-174-



WEALE (1972) pp.49,50

SQUARE LAW

ao : bo = 10

af = bf = 0

S= 0.05, 8 = 0.025

T Covy A(t) B(t)] P

0.0 0.000000 1.00000

1.' -0M012350 1.00000

2.0 -0M048853 1.00000

3.0 -0.108798 1.00000

4.0 -0.191621 1.00oo0

5.0 -0.296903 ).99999

6.0 -C.414359 1.99988

7.0 -0 .73847 ).99090

8.0 -0.745354 ).99466

9.0 -0.939006 0.98252

10.0 -i.155060 0.95673

1!.0 -!.193907 0.01259

12.0 -1.656076 0.14826

13.0 -1.9422_0 0o75546

14.0 -2.253173 0.668-4

15.0 -2.589852 0.56469

16.0 -2.953362 0.45964

17.0 -3.?44945 M.35954

18.0 -3.766006 0.26891

19.0 -4.218110 0.19073

p*; probability mas'. not -ibsorbed > t.h= =ntr3.

Table VT-2

-175-



WEALE ([9711 po.14.15

SOUARE LAW

Af o bf - 0

(t) - 9.756. (t) - 9.506
V(A(t)1 .2440079. V B(t)j - .494Z664"CoA(t), 8(t)] --.o123so2

an - 10.a " O.OSO00
bo • 10.3 - O..ZSO0

(a. b. t) 1 0.000.000

b783.725 1090 23,13S 1.98 17 6 a~l a a a 0
- _____

0 51?,191 172.367 121.394 :5.522 I .3226 35 4 0 0 o 0
4 131 "9.'.960 55.171 6.22.9 483 27 1 3 0 0 0 0

3 50.544 12.520 i.-84 37 4 3 0 0 0 0 0
S12-.85 10.1-8 1,385 172 10 0 0 0 0 0 0 0

5 1.527 1.293 212 17 1 0 0 0 0 a00 0
I 5 151I M3 19 t 1 0 a0 0 0 00 0

43 11 1 0 0 0 0 0 0 0 00 (a)

0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 0 000 0 0 00

0 0 0 0 0 0 000 0 0 0

WEALE 1!971 pp.16.17

SQUARE l-AW

,11, . bf - 0

MA(t) - 7.945. ,4(t) - S.1S3
viA(t) 2Z.309 S•85. V(B(t)]j- s.OS73893

•vA(t). d(t)] ;- -. 34=26SZ

". 10. •-- 0.05000
b 0 - 10. 8 * 0.02500

S- Ut.0
p(a. b. t0 x 1.000.000

a1019 a 7~ 6 1 5 4 3 2 1 01

b i146.119w 261.368 I 293.736 1174.952 95.191 143.233 j16,965 5.889 1.839 523 18

10 10.215 261 958 1.756 2.146 1.67 1.447 2 81 462 212 86 45
9 43.528 1.554 SIS7 9.964 9.765 7.328 5.111 ?,720 1.:27 477 162 64
8 96.381 5.235 15.487 ZZ,705 21,759 15.78 8,376 4,097 1.583 520 146 44
7 146.394 11.047 29.:68 37,92 32.168 Z2.414 10,032 3.393 1.315 362 34 19

S172,.545 17,484 40,80 47.164 35.412 19.428 .261 2,815 783 179 34 6
5 166.016 ZZ.137 45.765 46,232 30-289 14.393 5,257 1.518 353 A6 0 1 (b&
4 135.909 23.357 42.259 37.173 21.071 8.594 Z.664 646 124 19 2 0
3 97.146 21.123 33.12G 25.LZ5 12.195 4.221 1.097 220 34 4 0 0
2 61.773 16.715 22.449 14.501 5.949 1.722 369 60 7 1 0 0

1 35.442 11.,758 13.314 7.211 2459 585 101 13 1 0 0 0
a 34.152 15.347 I2.405 4.212 1.239 218 28 3 0 0 0 0

Table VI-3
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WEALE (1971) p.1a.19

SQUARE LAW

a f - bf - 0

@A(t) - 6.578. N(t) - 0.631
VjA(t) - 7.0306303. V 8(t)] - Z.7311309

"Coa(A(t). 5(t)]- -3.20080s
a - 10, a - 0.05000
b: - 10. 0 - 0.02500

o t.=41.0
p(a. b. t) 1.,000.000

a10 9 a 7 6 5 4 3 2 1 0

b 93,923 170,519 184.007 156,196 116.825 82.161 56.906 40,075 28.981 21.238 49,170

10 898 0 7 0 0 0 0 0 0 0 2 7 889
9 3.302 0 0 0 0 0 0 2 7 23 71 3.200
a 6,919 0 0 0 0 1 3 13 46 137 341 6.378 (3)
7 10,999 0 0 0 1 4 20 72 214 524 1,054 9,109
6 14.992 0 0 1 5 24 94 288 716 1,438 2.315 10,112
5 18,849 0 0 4 23 102 339 884 1,826 2.982 3,783 8,905
4 22,877 0 2 13 93 350 990 2.160 3.665 4.787 4.678 6.133
3 27,380 1 10 69 312 997 2,370 4.278 5,862 5,982 4,347 3.154
2 32.393 3 37 229 884 2,385 4.708 6,906 7,467 5.750 2.931 1.094
1 37.665 12 127 662 2,152 4,823 7,766 9.047 7.459 4,101 1,319 196
0 823,724 93.907 170.342 183.025 15Z.726 108,139 65.870 33.256 12.814 3.254 393 0

4EAt-F '1171() pp-'Q,'l

_.1AR E LAW

ar - bf - 0
6.486. mS(t) - 0.435

V(A(t) • 7.91857C9. V B(t)] - 2.3169327
Cov(A(t). 8(t)] -2.8030826

a - 10. -0.05000
b. 10. B - 0.02500

0 t - 80.0
p(a. b. t) 1.000.000

a10 9 8 7 6 5 4 3 2 1 0

b 93,9Z1 170,504 183.914 155,817 115.706 79.602 5Z.189 32,850 19.621 11,240 84.636

10 896 0 0 0 0 0 0 0 0 0 0 896
9 3.275 0 0 0 0 0 0 0 0 0 0 3.275
8 6.759 0 0 0 0 0 0 0 0 0 0 6.759
7 10.367 0 0 0 0 0 0 0 0 0 1 10.366 (b)
6 !3.114 0 0 0 0 0 0 0 0 1 7 13.106
5 14,376 0 0 0 0 0 0 0 0 5 42 14.330
4 13,978 0 0 0 0 0 0 0 3 26 181 13,767
3 12.166 0 0 0 0 o 0 2 16 ;z0 603 11.424
2 9.601 0 0 0 0 0 1 9 77 432 1.504 7.578

9 7.314 0 0 0 9 a004 47 297 1,198 2,630 .,136
a 908.155 931921 170,504 133.914 155 817 115.706 79.596 52.131 32.456 17.398 6,271 3

Table VI-4.
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KARR (1975b) LINEAR LAW p.14
30 ba =:o :100

rA aI f 0.1

p A p :0.5
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ef-'b1 =0

20 2
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13 3j 1

0 - 1 1 1 1 1 2 1 ! I 1
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A SURVIVORS

NUMBERS = NO. OF OUTCOMES WHERE LOCATED (SHOWS NEGATIVE CORMELATION)

Figure V1-2
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ANCKER and GAFARIANC)

SQUARE LAW

a =b =46

at-b =0

44 PA=PB= 2 0 0  (a)

-30-

o20-I...=

0.40 0 t go-
* 10 *1n *(I

0 s0 100 150 200 250 300 350 400 450 500
TIME

14- ANCKER and GAFARIANd ( *I SQUARE LAW

0 =bO=48

(b)

0 50 100 150 200 25'0 300 350 400 450 500
TIME

Figure VE-3.
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ANCXER and GAPARIAN (*)

SQUARE LAW
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Figure VT-4
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ANCKER and GAFARIAN ()SQUARE LAW

48 ab =b 48

a a0
IA 100

Z40- 13 =200

~A -. 0  (a)
-44 4 33.94 @

46 we46 SL 33.45 t =cc

0 50 100 1'50 20'0 25'0 300 350 400 450 500
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7 ANCKER and GAFARIAN (*) SQUARE LAW

- 4- (b)

TMA =100

2- J~~A 13= U0
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Time

Figure VI-5
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45- ANCKER and GAFARIAN (*) SQUARE LAW
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Figure VI-6
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ANCKER and GAFARIAN (*) SQUARE LAW
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Figure VI-7.

-187-



ANCKER and GAFARIAN (*) SQUARE LAW
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Figure VI-8
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ANCKER and GAFARIAN (*) SQUARE LAW
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Figure VI-9
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45- ANCKER and GAFARIAN (*) SQUARE LAW
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Figure VI-1O.
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ANCKER and GAFARIAN (*) SQUARE LAW
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90- ANCKER and GAFARIAN (*) SQUARE LAW
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TRAC-WSMR-TD-7-88

THE VALIDITY OF ASSUMPTIONS STUDY
UNDERLYING CURRENT USES OF GIST
LANCHESTER ATTRITION RATES

THE REASON FOR PERFORMING THE STUDY was to show that many of the prevailing
understandings concerning the relationships among the Lanchester, Stochastic
Lanchester, and the General Renewal models of combat are erroneous. and to
collect, organize, and reduce to common notation almost all known tabled results
and curves of particular examples.

THE PRINCIPAL RESULTS of this study were':

(1) All Lanchester model and Stochastic Lanchester model mean value
equivalent pairs differ for all times except at possible crossing points.
These differences may be very large.

(2) At least for the Square Law, the Lanchester model trajectories are
neither a universal upper or lower bound of the Stochastic Lanchester nmodel
mean value trajectories.

(3) Even near time zero, the Lanchester and Stochastic Lanchester model
mean value trajectories may differ considerably (they do not differ materially
for the Square Law and the sequence of one-on-one duels version of the Linear
Law).

(4) For the Linear Law, the Square Law, the Mixed Law and the Square
Law with continuous reinforcements there is a Law of Large Numbers on suitably
transformed spaces. However, for untransformed spaces this does not apply,
for it can be shown that as the initial force sizes tend to infinity the
differences between Lanchester model and Stochastic Lanchester model mean
value trajectories tend to zero, or they may even tend to a constant or
infinity.

(5) Blackwell's Theorum does not imply that individual combatants with
general interfiring times tend to have negative exponentially distributed
interfiring times. This is even more strongly the case for terminating
processes.

(6) The Palm-Khintchine Theorem does not imply that superposing a large
number of combatants with general interfiring times will yield a process with
negative exponentially distributed interfiring times. This can only be
approximately correct for large numbers and for very large interfiring time
means. Again, the Theorem is only valid for non-terminating processes.

(7) Nonhomogeneous Poisson processes do not, in general, approximate
general renewal processes.

TRAC Fwnm 49
1 Ual *O



(8) The Stochastic Lanchester model process variances are generally
quite significant and can be important for large force sizes, even near time
zero. In addition, general renewal model process variances are significantly
different that Stochastic Lanchester model process variances.

(9) The other Lanchester model measures, (a) expected number of survivors,
(b) expected time duration of the battle, and (c) probability of winning are
even less reliable predictors than the mean value trace.

(10) The basic assumptions of the Stochastic Lanchester models, as well

as the general renewal model, cannot hold for large numbers of combatants.

THE MAIN ASSUMPTIONS were that:

(a) All pre-combat decisions have been made and the battle goes forward
until terminated by the action itself or by tactical decisions.

(b) The true model which is to be approximated is termed a General Renewal
model.

(c) Each marksman fires until he is killed or makes a kill.

(d) The ammunition supply is unlimited.

(e) All fire independently.

THE MAJOR RESTRICTION is that the general renewal model is a superposition
of many terminating renewal processes.

THE SCOPE OF THE STUDY is to show that the basic assumptions of current combat
models do not hold for large numbers of combatants.

THE STUDY OBJECTIVES are to show that many factors cause large scale battles
to be a number of simultaneous and/or sequential smaller scale engagements
and that use of current deterministic Lanchester models is incorrect.

THE BASIC APPROACH is two fold. First the Lanchester model applications are
examined to show fallacies. Second all known tabled results and curves of
particular examples are provided to support the theoretical discussion.

THE STUDY SPONSOR is TRAC-WSMR.

THE STUDY PROPONENT is TRAC-WSMR.

THE ANALYSIS AGENCY is TRAC-WSMR.


